中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

Mechanism of action and potential therapeutic targets of ferroptosis suppressor protein 1 in liver diseases

DOI: 10.12449/JCH240731
Research funding:

Natural Science Research General Project of Shanxi Province (202203021211059)

More Information
  • Corresponding author: QIN Jie, hopejieqin@sohu.com (ORCID: 0000-0002-7249-093X)
  • Received Date: 2023-12-02
  • Accepted Date: 2024-01-29
  • Published Date: 2024-07-25
  • Ferroptosis suppressor protein 1 (FSP1) is another major ferroptosis regulator besides glutathione peroxidase 4, which can scavenge intracellular reactive oxygen species and lipid peroxides and inhibit ferroptosis. In view of the key role of the liver in iron and lipid metabolism and its susceptibility to oxidative damage, more and more evidence has shown that FSP1 plays an important role in liver diseases such as metabolic associated fatty liver disease, hepatocellular carcinoma, acute liver failure, and alcoholic liver disease, and the related targets of FSP1 are expected to become a potential treatment option. This article comprehensively reviews FSP1, with a focus on the role of FSP1 in the pathophysiology of several common liver diseases and the potential of FSP1 as a target of liver diseases, in order to provide new ideas for the treatment of liver diseases.

     

  • [1]
    DIXON SJ, LEMBERG KM, LAMPRECHT MR, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149( 5): 1060- 1072. DOI: 10.1016/j.cell.2012.03.042.
    [2]
    YANG WS, SRIRAMARATNAM R, WELSCH ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156( 1-2): 317- 331. DOI: 10.1016/j.cell.2013.12.010.
    [3]
    BERSUKER K, HENDRICKS JM, LI ZP, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575( 7784): 688- 692. DOI: 10.1038/s41586-019-1705-2.
    [4]
    DOLL S, FREITAS FP, SHAH R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575( 7784): 693- 698. DOI: 10.1038/s41586-019-1707-0.
    [5]
    MAO C, LIU XG, ZHANG YL, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J]. Nature, 2021, 593( 7860): 586- 590. DOI: 10.1038/s41586-021-03539-7.
    [6]
    KRAFT VAN, BEZJIAN CT, PFEIFFER S, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling[J]. ACS Cent Sci, 2020, 6( 1): 41- 53. DOI: 10.1021/acscentsci.9b01063.
    [7]
    ZHENG JS, CONRAD M. The metabolic underpinnings of ferroptosis[J]. Cell Metab, 2020, 32( 6): 920- 937. DOI: 10.1016/j.cmet.2020.10.011.
    [8]
    KNIGHT TR, FARISS MW, FARHOOD A, et al. Role of lipid peroxidation as a mechanism of liver injury after acetaminophen overdose in mice[J]. Toxicol Sci, 2003, 76( 1): 229- 236. DOI: 10.1093/toxsci/kfg220.
    [9]
    OHIRO Y, GARKAVTSEV I, KOBAYASHI S, et al. A novel p53-inducible apoptogenic gene, PRG3, encodes a homologue of the apoptosis-inducing factor(AIF)[J]. FEBS Lett, 2002, 524( 1-3): 163- 171. DOI: 10.1016/s0014-5793(02)03049-1.
    [10]
    WU M, XU LG, LI XY, et al. AMID, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis[J]. J Biol Chem, 2002, 277( 28): 25617- 25623. DOI: 10.1074/jbc.M202285200.
    [11]
    NOVO N, FERREIRA P, MEDINA M. The apoptosis-inducing factor family: Moonlighting proteins in the crosstalk between mitochondria and nuclei[J]. IUBMB Life, 2021, 73( 3): 568- 581. DOI: 10.1002/iub.2390.
    [12]
    MARSHALL KR, GONG M, WODKE L, et al. The human apoptosis-inducing protein AMID is an oxidoreductase with a modified flavin cofactor and DNA binding activity[J]. J Biol Chem, 2005, 280( 35): 30735- 30740. DOI: 10.1074/jbc.M414018200.
    [13]
    NGUYEN HP, YI D, LIN F, et al. Aifm2, a NADH oxidase, supports robust glycolysis and is required for cold- and diet-induced thermogenesis[J]. Mol Cell, 2020, 77( 3): 600- 617. DOI: 10.1016/j.molcel.2019.12.002.
    [14]
    ZENG FR, CHEN X, DENG GT. The anti-ferroptotic role of FSP1: Current molecular mechanism and therapeutic approach[J]. Mol Biomed, 2022, 3( 1): 37. DOI: 10.1186/s43556-022-00105-z.
    [15]
    MISHIMA E, ITO J, WU ZJ, et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor[J]. Nature, 2022, 608( 7924): 778- 783. DOI: 10.1038/s41586-022-05022-3.
    [16]
    MLADĚNKA P, MACÁKOVÁ K, KUJOVSKÁ KRČMOVÁ L, et al. Vitamin K-sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity[J]. Nutr Rev, 2022, 80( 4): 677- 698. DOI: 10.1093/nutrit/nuab061.
    [17]
    YOSHIOKA H, KAWAMURA T, MUROI M, et al. Identification of a small molecule that enhances ferroptosis via inhibition of ferroptosis suppressor protein 1(FSP1)[J]. ACS Chem Biol, 2022, 17( 2): 483- 491. DOI: 10.1021/acschembio.2c00028.
    [18]
    YOUNOSSI ZM, GOLABI P, PAIK JM, et al. The global epidemiology of nonalcoholic fatty liver disease(NAFLD) and nonalcoholic steatohepatitis(NASH): A systematic review[J]. Hepatology, 2023, 77( 4): 1335- 1347. DOI: 10.1097/HEP.0000000000000004.
    [19]
    KOWDLEY KV, BELT P, WILSON LA, et al. Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease[J]. Hepatology, 2012, 55( 1): 77- 85. DOI: 10.1002/hep.24706.
    [20]
    CRISMAN E, DUARTE P, DAUDEN E, et al. KEAP1-NRF2 protein-protein interaction inhibitors: Design, pharmacological properties and therapeutic potential[J]. Med Res Rev, 2023, 43( 1): 237- 287. DOI: 10.1002/med.21925.
    [21]
    SLOCUM SL, SKOKO JJ, WAKABAYASHI N, et al. Keap1/Nrf2 pathway activation leads to a repressed hepatic gluconeogenic and lipogenic program in mice on a high-fat diet[J]. Arch Biochem Biophys, 2016, 591: 57- 65. DOI: 10.1016/j.abb.2015.11.040.
    [22]
    GAO G, XIE ZS, LI EW, et al. Dehydroabietic acid improves nonalcoholic fatty liver disease through activating the Keap1/Nrf2-ARE signaling pathway to reduce ferroptosis[J]. J Nat Med, 2021, 75( 3): 540- 552. DOI: 10.1007/s11418-021-01491-4.
    [23]
    VENKATESH D, O’BRIEN NA, ZANDKARIMI F, et al. MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling[J]. Genes Dev, 2020, 34( 7-8): 526- 543. DOI: 10.1101/gad.334219.119.
    [24]
    KANE RC, FARRELL AT, MADABUSHI R, et al. Sorafenib for the treatment of unresectable hepatocellular carcinoma[J]. Oncologist, 2009, 14( 1): 95- 100. DOI: 10.1634/theoncologist.2008-0185.
    [25]
    DOU T, ZHU XG, YANG H. Research progress on ferroptosis in hepatocellular carcinoma[J/CD]. Chin J Liver Dis Electron Version, 2023, 15( 4): 6- 10. DOI: 10.3969/j.issn.1674-7380.2023.04.002.

    窦婷, 朱向高, 杨昊. 铁死亡在肝细胞癌中的研究进展[J/CD]. 中国肝脏病杂志(电子版), 2023, 15( 4): 6- 10. DOI: 10.3969/j.issn.1674-7380.2023.04.002.
    [26]
    SUN XF, OU ZH, CHEN RC, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells[J]. Hepatology, 2016, 63( 1): 173- 184. DOI: 10.1002/hep.28251.
    [27]
    LIU MR, SHI C, SONG QY, et al. Sorafenib induces ferroptosis by promoting TRIM54-mediated FSP1 ubiquitination and degradation in hepatocellular carcinoma[J]. Hepatol Commun, 2023, 7( 10): e0246. DOI: 10.1097/HC9.0000000000000246.
    [28]
    YUAN JS, LV T, YANG J, et al. HDLBP-stabilized lncFAL inhibits ferroptosis vulnerability by diminishing Trim69-dependent FSP1 degradation in hepatocellular carcinoma[J]. Redox Biol, 2022, 58: 102546. DOI: 10.1016/j.redox.2022.102546.
    [29]
    CHEU JW, LEE D, LI QD, et al. Ferroptosis suppressor protein 1 inhibition promotes tumor ferroptosis and anti-tumor immune responses in liver cancer[J]. Cell Mol Gastroenterol Hepatol, 2023, 16( 1): 133- 159. DOI: 10.1016/j.jcmgh.2023.03.001.
    [30]
    XAVIER DA SILVA TN, SCHULTE C, ALVES AN, et al. Molecular characterization of AIFM2/FSP1 inhibition by iFSP1-like molecules[J]. Cell Death Dis, 2023, 14( 4): 281. DOI: 10.1038/s41419-023-05787-z.
    [31]
    NAKAMURA T, HIPP C, SANTOS DIAS MOURÃO A, et al. Phase separation of FSP1 promotes ferroptosis[J]. Nature, 2023, 619( 7969): 371- 377. DOI: 10.1038/s41586-023-06255-6.
    [32]
    YANG J, JIA ZG, ZHANG J, et al. Metabolic intervention nanoparticles for triple-negative breast cancer therapy via overcoming FSP1-mediated ferroptosis resistance[J]. Adv Healthc Mater, 2022, 11( 13): e2102799. DOI: 10.1002/adhm.202102799.
    [33]
    HUANG S, WANG YH, XIE SW, et al. Hepatic TGFβr1 deficiency attenuates lipopolysaccharide/D-galactosamine-induced acute liver failure through inhibiting GSK3β-Nrf2-mediated hepatocyte apoptosis and ferroptosis[J]. Cell Mol Gastroenterol Hepatol, 2022, 13( 6): 1649- 1672. DOI: 10.1016/j.jcmgh.2022.02.009.
    [34]
    OYEWOLE AO, BIRCH-MACHIN MA. Mitochondria-targeted antioxidants[J]. FASEB J, 2015, 29( 12): 4766- 4771. DOI: 10.1096/fj.15-275404.
    [35]
    HE X, LIANG SM, WANG HQ, et al. Mitoquinone protects against acetaminophen-induced liver injury in an FSP1-dependent and GPX4-independent manner[J]. Toxicol Appl Pharmacol, 2023, 465: 116452. DOI: 10.1016/j.taap.2023.116452.
    [36]
    JAESCHKE H, RAMACHANDRAN A, CHAO XJ, et al. Emerging and established modes of cell death during acetaminophen-induced liver injury[J]. Arch Toxicol, 2019, 93( 12): 3491- 3502. DOI: 10.1007/s00204-019-02597-1.
    [37]
    LIU CY, WANG M, YU HM, et al. Ferroptosis is involved in alcohol-induced cell death invivo and invivo[J]. Biosci Biotechnol Biochem, 2020, 84( 8): 1621- 1628. DOI: 10.1080/09168451.2020.1763155.
    [38]
    LI Y, YANG S. Progress on alcoholic liver disease[J/CD]. Chin J Liver Dis Electron Version, 2022, 14( 3): 1- 4. DOI: 10.3969/j.issn.1674-7380.2022.03.001.

    李玥, 杨松. 酒精性肝病研究进展[J/CD]. 中国肝脏病杂志(电子版), 2022, 14( 3): 1- 4. DOI: 10.3969/j.issn.1674-7380.2022.03.001..
    [39]
    ZHANG Y, ZHAO S, FU Y, et al. Computational repositioning of dimethyl fumarate for treating alcoholic liver disease[J]. Cell Death Dis, 2020, 11( 8): 641. DOI: 10.1038/s41419-020-02890-3.
    [40]
    WARD NP, DENICOLA GM. Long-sought mediator of vitamin K recycling discovered[J]. Nature, 2022, 608( 7924): 673- 674. DOI: 10.1038/d41586-022-02001-6.
  • Relative Articles

    [1]Mingqiang ZHU, Xing XIE, Qicheng LIAO, Xiao HE, Youming DING, Xiaohua WANG. Mechanism of cuproptosis and its role in liver diseases[J]. Journal of Clinical Hepatology, 2024, 40(11): 2332-2337. doi: 10.12449/JCH241131
    [2]Lu YE, Fan ZHAO, Qianqian HUANG, Jiayi ZHANG, Jianqing WANG. Menaquinone-4 exerts a protective effect against carbon tetrachloride-induced acute liver injury in mice by alleviating ferroptosis[J]. Journal of Clinical Hepatology, 2024, 40(1): 121-128. doi: 10.12449/JCH240121
    [3]Jiaxin LIANG, Baolin XU, Yu CHENG, Yong WEI. Role of ferroptosis in hepatic ischemia-reperfusion injury[J]. Journal of Clinical Hepatology, 2024, 40(8): 1693-1698. doi: 10.12449/JCH240830
    [4]Zhurong LI, Chen CHEN, Di GUO, Sixue LYU, Jiawen WU, Na YANG, Yang LIU. Role and mechanism of action of Yinchenhao Decoction in inhibiting ferroptosis of hepatocytes in mice with autoimmune hepatitis[J]. Journal of Clinical Hepatology, 2024, 40(3): 502-508. doi: 10.12449/JCH240311
    [5]Zhen LI, Jiangkai LIU. The mechanism of p53 signaling pathway regulating ferroptosis in hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2023, 39(4): 956-960. doi: 10.3969/j.issn.1001-5256.2023.04.032
    [6]Longyun WU, Xiaolan LU. Research advances in ferroptosis in the pathogenesis and treatment of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2023, 39(7): 1687-1695. doi: 10.3969/j.issn.1001-5256.2023.07.025
    [7]Lu YE, Xiuqin LI, Jianqing WANG. Association between endoplasmic reticulum stress and ferroptosis in liver diseases[J]. Journal of Clinical Hepatology, 2023, 39(4): 980-985. doi: 10.3969/j.issn.1001-5256.2023.04.036
    [8]Laying ZHANG, Mingkai CHEN. Research advances in the mechanism of action of TRPV4 ion channel protein in liver diseases[J]. Journal of Clinical Hepatology, 2022, 38(1): 224-227. doi: 10.3969/j.issn.1001-5256.2022.01.040
    [9]Zhengguang LIAO, Shihui WEI, Danyu DU, Li SUN, Shengtao YUAN. Role of lipocalin-2 in the development and progression of liver diseases[J]. Journal of Clinical Hepatology, 2022, 38(9): 2177-2181. doi: 10.3969/j.issn.1001-5256.2022.09.044
    [10]Mingyu YANG, Zhen YANG, Wanhua REN. Mechanism of action of ferroptosis in cholangiocarcinoma[J]. Journal of Clinical Hepatology, 2022, 38(4): 951-955. doi: 10.3969/j.issn.1001-5256.2022.04.043
    [11]Minghao LIU, Sutong LIU, Lihui ZHANG, Yajiao GU, Dongfang SHANG, Zhun XIAO, Wenxia ZHAO. Mechanism of ferroptosis in the formation of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis[J]. Journal of Clinical Hepatology, 2022, 38(5): 1152-1155. doi: 10.3969/j.issn.1001-5256.2022.05.037
    [12]Xia WU, Xiaoning ZHU, Yurong ZHANG, Yue YIN, Mengyun PENG, Ding ZHENG, Jing WANG. Mechanism of action of suppressor of cytokine signaling 1 in the development and progression of liver inflammatory diseases[J]. Journal of Clinical Hepatology, 2021, 37(4): 973-976. doi: 10.3969/j.issn.1001-5256.2021.04.055
    [13]Feiyu ZHANG, ADILA·Yakepu, Jinming ZHAO, Yanhang GAO. Mechanism of ferroptosis and its role in liver diseases[J]. Journal of Clinical Hepatology, 2021, 37(6): 1454-1458. doi: 10.3969/j.issn.1001-5256.2021.06.049
    [14]Wang ShanShan, Zhang QingShan, Zhao SuXian, Kong LingBo, Ji Lei, Kong Li. The immunoregulatory effect of tumor necrosis factor-alpha-induced protein 8-like 2 in different liver diseases[J]. Journal of Clinical Hepatology, 2020, 36(2): 460-463. doi: 10.3969/j.issn.1001-5256.2020.02.050
    [15]XU LiJun, AN XiuQin, LI Yue, LIU JinChun. Research advances in the role of myeloid-derived suppressor cells in liver diseases[J]. Journal of Clinical Hepatology, 2020, 36(12): 2851-2855. doi: 10.3969/j.issn.1001-5256.2020.12.045
    [16]Ye QianLing, Mao DeWen, Wang MingGang, Wang Na. Role of NLRP3 inflammasome in the development and progression of liver diseases[J]. Journal of Clinical Hepatology, 2019, 35(10): 2346-2350. doi: 10.3969/j.issn.1001-5256.2019.10.048
    [17]Wei FengXian, Liu Zhao, Geng Jie, Su GuoHong, Chen Mo, Wang ManCai, Cao WeiJia, Zhang YouCheng. Research advances in association between Golgi protein 73 and liver diseases[J]. Journal of Clinical Hepatology, 2017, 33(8): 1595-1598. doi: 10.3969/j.issn.1001-5256.2017.08.040
    [19]Zhang Qian, Han Tao. Research progress in advanced oxidation protein products in liver diseases[J]. Journal of Clinical Hepatology, 2013, 29(8): 581-584. doi: 10.3969/j.issn.1001-5256.2013.08.007
    [20]Zhang Zhe, Guo JinSheng. The role of high mobility group box 1 in human liver diseases[J]. Journal of Clinical Hepatology, 2011, 27(10): 1116-1120.
  • Cited by

    Periodical cited type(1)

    1. 焦靖雯,王蓉芝,王琳雳,于云飞,李宝龙. Nrf2在铁死亡调控中的关键作用及其在非酒精性脂肪肝病中的潜在应用研究进展. 中国医药导报. 2025(03): 69-72 .

    Other cited types(0)

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.3 %FULLTEXT: 25.3 %META: 70.9 %META: 70.9 %PDF: 3.8 %PDF: 3.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.9 %其他: 3.9 %Central District: 0.1 %Central District: 0.1 %Monroe: 0.1 %Monroe: 0.1 %Tiruchi: 0.1 %Tiruchi: 0.1 %上海: 9.1 %上海: 9.1 %东京: 0.2 %东京: 0.2 %东莞: 0.1 %东莞: 0.1 %临沂: 0.2 %临沂: 0.2 %丽水: 0.6 %丽水: 0.6 %九龙: 0.1 %九龙: 0.1 %六安: 0.1 %六安: 0.1 %北京: 4.1 %北京: 4.1 %北海: 0.1 %北海: 0.1 %南京: 0.4 %南京: 0.4 %南宁: 0.2 %南宁: 0.2 %南平: 0.2 %南平: 0.2 %南昌: 0.2 %南昌: 0.2 %卡纳塔克: 0.2 %卡纳塔克: 0.2 %厦门: 0.2 %厦门: 0.2 %台州: 1.2 %台州: 1.2 %合肥: 0.2 %合肥: 0.2 %吉林: 0.3 %吉林: 0.3 %呼和浩特: 0.3 %呼和浩特: 0.3 %咸阳: 1.2 %咸阳: 1.2 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.9 %嘉兴: 0.9 %大连: 0.7 %大连: 0.7 %天津: 0.1 %天津: 0.1 %宁德: 0.2 %宁德: 0.2 %宁波: 0.8 %宁波: 0.8 %安娜堡: 0.1 %安娜堡: 0.1 %安康: 0.5 %安康: 0.5 %宜春: 0.3 %宜春: 0.3 %宿迁: 0.8 %宿迁: 0.8 %常德: 0.5 %常德: 0.5 %广安: 0.2 %广安: 0.2 %广州: 2.0 %广州: 2.0 %廊坊: 0.2 %廊坊: 0.2 %弗吉尼亚州: 0.4 %弗吉尼亚州: 0.4 %张家口: 1.1 %张家口: 1.1 %徐州: 0.3 %徐州: 0.3 %德阳: 0.7 %德阳: 0.7 %惠州: 0.1 %惠州: 0.1 %成都: 0.7 %成都: 0.7 %扬州: 0.3 %扬州: 0.3 %抚州: 1.4 %抚州: 1.4 %文昌: 0.2 %文昌: 0.2 %新余: 0.1 %新余: 0.1 %新德里: 0.1 %新德里: 0.1 %新界: 0.2 %新界: 0.2 %无锡: 0.5 %无锡: 0.5 %日照: 0.2 %日照: 0.2 %昆明: 0.5 %昆明: 0.5 %朝阳: 0.3 %朝阳: 0.3 %杭州: 1.6 %杭州: 1.6 %枣庄: 0.2 %枣庄: 0.2 %格兰特县: 0.1 %格兰特县: 0.1 %榆林: 1.0 %榆林: 1.0 %武汉: 0.6 %武汉: 0.6 %毕尔巴鄂: 0.2 %毕尔巴鄂: 0.2 %汕头: 0.2 %汕头: 0.2 %江门: 0.1 %江门: 0.1 %池州: 0.5 %池州: 0.5 %沈阳: 0.5 %沈阳: 0.5 %泉州: 0.1 %泉州: 0.1 %法尔肯施泰因: 0.1 %法尔肯施泰因: 0.1 %波士顿: 0.2 %波士顿: 0.2 %泰州: 0.3 %泰州: 0.3 %泸州: 0.6 %泸州: 0.6 %济南: 0.2 %济南: 0.2 %海得拉巴: 0.3 %海得拉巴: 0.3 %海西: 0.1 %海西: 0.1 %淮北: 0.6 %淮北: 0.6 %淮南: 0.2 %淮南: 0.2 %淮安: 0.4 %淮安: 0.4 %温州: 0.3 %温州: 0.3 %渭南: 0.4 %渭南: 0.4 %湖州: 0.7 %湖州: 0.7 %湘西: 0.3 %湘西: 0.3 %漯河: 0.6 %漯河: 0.6 %漳州: 0.6 %漳州: 0.6 %焦作: 0.2 %焦作: 0.2 %珠海: 0.1 %珠海: 0.1 %盐城: 0.3 %盐城: 0.3 %盘锦: 0.2 %盘锦: 0.2 %眉山: 0.1 %眉山: 0.1 %石嘴山: 0.3 %石嘴山: 0.3 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.5 %福州: 0.5 %科泽科德: 0.1 %科泽科德: 0.1 %绍兴: 1.5 %绍兴: 1.5 %绵阳: 0.3 %绵阳: 0.3 %自贡: 0.1 %自贡: 0.1 %舟山: 0.7 %舟山: 0.7 %芒廷维尤: 18.0 %芒廷维尤: 18.0 %芝加哥: 1.0 %芝加哥: 1.0 %苏州: 0.2 %苏州: 0.2 %荆门: 0.6 %荆门: 0.6 %莆田: 0.2 %莆田: 0.2 %营口: 0.2 %营口: 0.2 %葫芦岛: 0.2 %葫芦岛: 0.2 %蚌埠: 0.2 %蚌埠: 0.2 %衢州: 0.6 %衢州: 0.6 %襄阳: 1.2 %襄阳: 1.2 %西宁: 4.2 %西宁: 4.2 %西安: 1.4 %西安: 1.4 %西雅图: 0.2 %西雅图: 0.2 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.2 %贵阳: 0.2 %辽阳: 0.5 %辽阳: 0.5 %运城: 0.6 %运城: 0.6 %连云港: 1.4 %连云港: 1.4 %遂宁: 0.1 %遂宁: 0.1 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.1 %邯郸: 0.1 %邵阳: 0.4 %邵阳: 0.4 %郑州: 0.6 %郑州: 0.6 %郴州: 0.9 %郴州: 0.9 %重庆: 1.4 %重庆: 1.4 %金华: 0.4 %金华: 0.4 %铁岭: 1.1 %铁岭: 1.1 %锦州: 0.4 %锦州: 0.4 %镇江: 0.2 %镇江: 0.2 %长春: 6.8 %长春: 6.8 %长沙: 0.3 %长沙: 0.3 %随州: 0.1 %随州: 0.1 %雅安: 0.3 %雅安: 0.3 %青岛: 0.3 %青岛: 0.3 %鞍山: 2.2 %鞍山: 2.2 %黄冈: 0.6 %黄冈: 0.6 %黄南: 0.4 %黄南: 0.4 %其他Central DistrictMonroeTiruchi上海东京东莞临沂丽水九龙六安北京北海南京南宁南平南昌卡纳塔克厦门台州合肥吉林呼和浩特咸阳哈尔滨哥伦布嘉兴大连天津宁德宁波安娜堡安康宜春宿迁常德广安广州廊坊弗吉尼亚州张家口徐州德阳惠州成都扬州抚州文昌新余新德里新界无锡日照昆明朝阳杭州枣庄格兰特县榆林武汉毕尔巴鄂汕头江门池州沈阳泉州法尔肯施泰因波士顿泰州泸州济南海得拉巴海西淮北淮南淮安温州渭南湖州湘西漯河漳州焦作珠海盐城盘锦眉山石嘴山石家庄福州科泽科德绍兴绵阳自贡舟山芒廷维尤芝加哥苏州荆门莆田营口葫芦岛蚌埠衢州襄阳西宁西安西雅图诺沃克贵阳辽阳运城连云港遂宁遵义邯郸邵阳郑州郴州重庆金华铁岭锦州镇江长春长沙随州雅安青岛鞍山黄冈黄南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (754) PDF downloads(41) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return