[1] |
DIXON SJ, LEMBERG KM, LAMPRECHT MR, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149( 5): 1060- 1072. DOI: 10.1016/j.cell.2012.03.042.
|
[2] |
YANG WS, SRIRAMARATNAM R, WELSCH ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156( 1-2): 317- 331. DOI: 10.1016/j.cell.2013.12.010.
|
[3] |
BERSUKER K, HENDRICKS JM, LI ZP, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575( 7784): 688- 692. DOI: 10.1038/s41586-019-1705-2.
|
[4] |
DOLL S, FREITAS FP, SHAH R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575( 7784): 693- 698. DOI: 10.1038/s41586-019-1707-0.
|
[5] |
MAO C, LIU XG, ZHANG YL, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J]. Nature, 2021, 593( 7860): 586- 590. DOI: 10.1038/s41586-021-03539-7.
|
[6] |
KRAFT VAN, BEZJIAN CT, PFEIFFER S, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling[J]. ACS Cent Sci, 2020, 6( 1): 41- 53. DOI: 10.1021/acscentsci.9b01063.
|
[7] |
ZHENG JS, CONRAD M. The metabolic underpinnings of ferroptosis[J]. Cell Metab, 2020, 32( 6): 920- 937. DOI: 10.1016/j.cmet.2020.10.011.
|
[8] |
KNIGHT TR, FARISS MW, FARHOOD A, et al. Role of lipid peroxidation as a mechanism of liver injury after acetaminophen overdose in mice[J]. Toxicol Sci, 2003, 76( 1): 229- 236. DOI: 10.1093/toxsci/kfg220.
|
[9] |
OHIRO Y, GARKAVTSEV I, KOBAYASHI S, et al. A novel p53-inducible apoptogenic gene, PRG3, encodes a homologue of the apoptosis-inducing factor(AIF)[J]. FEBS Lett, 2002, 524( 1-3): 163- 171. DOI: 10.1016/s0014-5793(02)03049-1.
|
[10] |
WU M, XU LG, LI XY, et al. AMID, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis[J]. J Biol Chem, 2002, 277( 28): 25617- 25623. DOI: 10.1074/jbc.M202285200.
|
[11] |
NOVO N, FERREIRA P, MEDINA M. The apoptosis-inducing factor family: Moonlighting proteins in the crosstalk between mitochondria and nuclei[J]. IUBMB Life, 2021, 73( 3): 568- 581. DOI: 10.1002/iub.2390.
|
[12] |
MARSHALL KR, GONG M, WODKE L, et al. The human apoptosis-inducing protein AMID is an oxidoreductase with a modified flavin cofactor and DNA binding activity[J]. J Biol Chem, 2005, 280( 35): 30735- 30740. DOI: 10.1074/jbc.M414018200.
|
[13] |
NGUYEN HP, YI D, LIN F, et al. Aifm2, a NADH oxidase, supports robust glycolysis and is required for cold- and diet-induced thermogenesis[J]. Mol Cell, 2020, 77( 3): 600- 617. DOI: 10.1016/j.molcel.2019.12.002.
|
[14] |
ZENG FR, CHEN X, DENG GT. The anti-ferroptotic role of FSP1: Current molecular mechanism and therapeutic approach[J]. Mol Biomed, 2022, 3( 1): 37. DOI: 10.1186/s43556-022-00105-z.
|
[15] |
MISHIMA E, ITO J, WU ZJ, et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor[J]. Nature, 2022, 608( 7924): 778- 783. DOI: 10.1038/s41586-022-05022-3.
|
[16] |
MLADĚNKA P, MACÁKOVÁ K, KUJOVSKÁ KRČMOVÁ L, et al. Vitamin K-sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity[J]. Nutr Rev, 2022, 80( 4): 677- 698. DOI: 10.1093/nutrit/nuab061.
|
[17] |
YOSHIOKA H, KAWAMURA T, MUROI M, et al. Identification of a small molecule that enhances ferroptosis via inhibition of ferroptosis suppressor protein 1(FSP1)[J]. ACS Chem Biol, 2022, 17( 2): 483- 491. DOI: 10.1021/acschembio.2c00028.
|
[18] |
YOUNOSSI ZM, GOLABI P, PAIK JM, et al. The global epidemiology of nonalcoholic fatty liver disease(NAFLD) and nonalcoholic steatohepatitis(NASH): A systematic review[J]. Hepatology, 2023, 77( 4): 1335- 1347. DOI: 10.1097/HEP.0000000000000004.
|
[19] |
KOWDLEY KV, BELT P, WILSON LA, et al. Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease[J]. Hepatology, 2012, 55( 1): 77- 85. DOI: 10.1002/hep.24706.
|
[20] |
CRISMAN E, DUARTE P, DAUDEN E, et al. KEAP1-NRF2 protein-protein interaction inhibitors: Design, pharmacological properties and therapeutic potential[J]. Med Res Rev, 2023, 43( 1): 237- 287. DOI: 10.1002/med.21925.
|
[21] |
SLOCUM SL, SKOKO JJ, WAKABAYASHI N, et al. Keap1/Nrf2 pathway activation leads to a repressed hepatic gluconeogenic and lipogenic program in mice on a high-fat diet[J]. Arch Biochem Biophys, 2016, 591: 57- 65. DOI: 10.1016/j.abb.2015.11.040.
|
[22] |
GAO G, XIE ZS, LI EW, et al. Dehydroabietic acid improves nonalcoholic fatty liver disease through activating the Keap1/Nrf2-ARE signaling pathway to reduce ferroptosis[J]. J Nat Med, 2021, 75( 3): 540- 552. DOI: 10.1007/s11418-021-01491-4.
|
[23] |
VENKATESH D, O’BRIEN NA, ZANDKARIMI F, et al. MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling[J]. Genes Dev, 2020, 34( 7-8): 526- 543. DOI: 10.1101/gad.334219.119.
|
[24] |
KANE RC, FARRELL AT, MADABUSHI R, et al. Sorafenib for the treatment of unresectable hepatocellular carcinoma[J]. Oncologist, 2009, 14( 1): 95- 100. DOI: 10.1634/theoncologist.2008-0185.
|
[25] |
DOU T, ZHU XG, YANG H. Research progress on ferroptosis in hepatocellular carcinoma[J/CD]. Chin J Liver Dis Electron Version, 2023, 15( 4): 6- 10. DOI: 10.3969/j.issn.1674-7380.2023.04.002.
窦婷, 朱向高, 杨昊. 铁死亡在肝细胞癌中的研究进展[J/CD]. 中国肝脏病杂志(电子版), 2023, 15( 4): 6- 10. DOI: 10.3969/j.issn.1674-7380.2023.04.002.
|
[26] |
SUN XF, OU ZH, CHEN RC, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells[J]. Hepatology, 2016, 63( 1): 173- 184. DOI: 10.1002/hep.28251.
|
[27] |
LIU MR, SHI C, SONG QY, et al. Sorafenib induces ferroptosis by promoting TRIM54-mediated FSP1 ubiquitination and degradation in hepatocellular carcinoma[J]. Hepatol Commun, 2023, 7( 10): e0246. DOI: 10.1097/HC9.0000000000000246.
|
[28] |
YUAN JS, LV T, YANG J, et al. HDLBP-stabilized lncFAL inhibits ferroptosis vulnerability by diminishing Trim69-dependent FSP1 degradation in hepatocellular carcinoma[J]. Redox Biol, 2022, 58: 102546. DOI: 10.1016/j.redox.2022.102546.
|
[29] |
CHEU JW, LEE D, LI QD, et al. Ferroptosis suppressor protein 1 inhibition promotes tumor ferroptosis and anti-tumor immune responses in liver cancer[J]. Cell Mol Gastroenterol Hepatol, 2023, 16( 1): 133- 159. DOI: 10.1016/j.jcmgh.2023.03.001.
|
[30] |
XAVIER DA SILVA TN, SCHULTE C, ALVES AN, et al. Molecular characterization of AIFM2/FSP1 inhibition by iFSP1-like molecules[J]. Cell Death Dis, 2023, 14( 4): 281. DOI: 10.1038/s41419-023-05787-z.
|
[31] |
NAKAMURA T, HIPP C, SANTOS DIAS MOURÃO A, et al. Phase separation of FSP1 promotes ferroptosis[J]. Nature, 2023, 619( 7969): 371- 377. DOI: 10.1038/s41586-023-06255-6.
|
[32] |
YANG J, JIA ZG, ZHANG J, et al. Metabolic intervention nanoparticles for triple-negative breast cancer therapy via overcoming FSP1-mediated ferroptosis resistance[J]. Adv Healthc Mater, 2022, 11( 13): e2102799. DOI: 10.1002/adhm.202102799.
|
[33] |
HUANG S, WANG YH, XIE SW, et al. Hepatic TGFβr1 deficiency attenuates lipopolysaccharide/D-galactosamine-induced acute liver failure through inhibiting GSK3β-Nrf2-mediated hepatocyte apoptosis and ferroptosis[J]. Cell Mol Gastroenterol Hepatol, 2022, 13( 6): 1649- 1672. DOI: 10.1016/j.jcmgh.2022.02.009.
|
[34] |
OYEWOLE AO, BIRCH-MACHIN MA. Mitochondria-targeted antioxidants[J]. FASEB J, 2015, 29( 12): 4766- 4771. DOI: 10.1096/fj.15-275404.
|
[35] |
HE X, LIANG SM, WANG HQ, et al. Mitoquinone protects against acetaminophen-induced liver injury in an FSP1-dependent and GPX4-independent manner[J]. Toxicol Appl Pharmacol, 2023, 465: 116452. DOI: 10.1016/j.taap.2023.116452.
|
[36] |
JAESCHKE H, RAMACHANDRAN A, CHAO XJ, et al. Emerging and established modes of cell death during acetaminophen-induced liver injury[J]. Arch Toxicol, 2019, 93( 12): 3491- 3502. DOI: 10.1007/s00204-019-02597-1.
|
[37] |
LIU CY, WANG M, YU HM, et al. Ferroptosis is involved in alcohol-induced cell death in
|
[38] |
LI Y, YANG S. Progress on alcoholic liver disease[J/CD]. Chin J Liver Dis Electron Version, 2022, 14( 3): 1- 4. DOI: 10.3969/j.issn.1674-7380.2022.03.001.
李玥, 杨松. 酒精性肝病研究进展[J/CD]. 中国肝脏病杂志(电子版), 2022, 14( 3): 1- 4. DOI: 10.3969/j.issn.1674-7380.2022.03.001..
|
[39] |
ZHANG Y, ZHAO S, FU Y, et al. Computational repositioning of dimethyl fumarate for treating alcoholic liver disease[J]. Cell Death Dis, 2020, 11( 8): 641. DOI: 10.1038/s41419-020-02890-3.
|
[40] |
WARD NP, DENICOLA GM. Long-sought mediator of vitamin K recycling discovered[J]. Nature, 2022, 608( 7924): 673- 674. DOI: 10.1038/d41586-022-02001-6.
|
[1] | Mingqiang ZHU, Xing XIE, Qicheng LIAO, Xiao HE, Youming DING, Xiaohua WANG. Mechanism of cuproptosis and its role in liver diseases[J]. Journal of Clinical Hepatology, 2024, 40(11): 2332-2337. doi: 10.12449/JCH241131 |
[2] | Lu YE, Fan ZHAO, Qianqian HUANG, Jiayi ZHANG, Jianqing WANG. Menaquinone-4 exerts a protective effect against carbon tetrachloride-induced acute liver injury in mice by alleviating ferroptosis[J]. Journal of Clinical Hepatology, 2024, 40(1): 121-128. doi: 10.12449/JCH240121 |
[3] | Jiaxin LIANG, Baolin XU, Yu CHENG, Yong WEI. Role of ferroptosis in hepatic ischemia-reperfusion injury[J]. Journal of Clinical Hepatology, 2024, 40(8): 1693-1698. doi: 10.12449/JCH240830 |
[4] | Zhurong LI, Chen CHEN, Di GUO, Sixue LYU, Jiawen WU, Na YANG, Yang LIU. Role and mechanism of action of Yinchenhao Decoction in inhibiting ferroptosis of hepatocytes in mice with autoimmune hepatitis[J]. Journal of Clinical Hepatology, 2024, 40(3): 502-508. doi: 10.12449/JCH240311 |
[5] | Zhen LI, Jiangkai LIU. The mechanism of p53 signaling pathway regulating ferroptosis in hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2023, 39(4): 956-960. doi: 10.3969/j.issn.1001-5256.2023.04.032 |
[6] | Longyun WU, Xiaolan LU. Research advances in ferroptosis in the pathogenesis and treatment of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2023, 39(7): 1687-1695. doi: 10.3969/j.issn.1001-5256.2023.07.025 |
[7] | Lu YE, Xiuqin LI, Jianqing WANG. Association between endoplasmic reticulum stress and ferroptosis in liver diseases[J]. Journal of Clinical Hepatology, 2023, 39(4): 980-985. doi: 10.3969/j.issn.1001-5256.2023.04.036 |
[8] | Laying ZHANG, Mingkai CHEN. Research advances in the mechanism of action of TRPV4 ion channel protein in liver diseases[J]. Journal of Clinical Hepatology, 2022, 38(1): 224-227. doi: 10.3969/j.issn.1001-5256.2022.01.040 |
[9] | Zhengguang LIAO, Shihui WEI, Danyu DU, Li SUN, Shengtao YUAN. Role of lipocalin-2 in the development and progression of liver diseases[J]. Journal of Clinical Hepatology, 2022, 38(9): 2177-2181. doi: 10.3969/j.issn.1001-5256.2022.09.044 |
[10] | Mingyu YANG, Zhen YANG, Wanhua REN. Mechanism of action of ferroptosis in cholangiocarcinoma[J]. Journal of Clinical Hepatology, 2022, 38(4): 951-955. doi: 10.3969/j.issn.1001-5256.2022.04.043 |
[11] | Minghao LIU, Sutong LIU, Lihui ZHANG, Yajiao GU, Dongfang SHANG, Zhun XIAO, Wenxia ZHAO. Mechanism of ferroptosis in the formation of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis[J]. Journal of Clinical Hepatology, 2022, 38(5): 1152-1155. doi: 10.3969/j.issn.1001-5256.2022.05.037 |
[12] | Xia WU, Xiaoning ZHU, Yurong ZHANG, Yue YIN, Mengyun PENG, Ding ZHENG, Jing WANG. Mechanism of action of suppressor of cytokine signaling 1 in the development and progression of liver inflammatory diseases[J]. Journal of Clinical Hepatology, 2021, 37(4): 973-976. doi: 10.3969/j.issn.1001-5256.2021.04.055 |
[13] | Feiyu ZHANG, ADILA·Yakepu, Jinming ZHAO, Yanhang GAO. Mechanism of ferroptosis and its role in liver diseases[J]. Journal of Clinical Hepatology, 2021, 37(6): 1454-1458. doi: 10.3969/j.issn.1001-5256.2021.06.049 |
[14] | Wang ShanShan, Zhang QingShan, Zhao SuXian, Kong LingBo, Ji Lei, Kong Li. The immunoregulatory effect of tumor necrosis factor-alpha-induced protein 8-like 2 in different liver diseases[J]. Journal of Clinical Hepatology, 2020, 36(2): 460-463. doi: 10.3969/j.issn.1001-5256.2020.02.050 |
[15] | XU LiJun, AN XiuQin, LI Yue, LIU JinChun. Research advances in the role of myeloid-derived suppressor cells in liver diseases[J]. Journal of Clinical Hepatology, 2020, 36(12): 2851-2855. doi: 10.3969/j.issn.1001-5256.2020.12.045 |
[16] | Ye QianLing, Mao DeWen, Wang MingGang, Wang Na. Role of NLRP3 inflammasome in the development and progression of liver diseases[J]. Journal of Clinical Hepatology, 2019, 35(10): 2346-2350. doi: 10.3969/j.issn.1001-5256.2019.10.048 |
[17] | Wei FengXian, Liu Zhao, Geng Jie, Su GuoHong, Chen Mo, Wang ManCai, Cao WeiJia, Zhang YouCheng. Research advances in association between Golgi protein 73 and liver diseases[J]. Journal of Clinical Hepatology, 2017, 33(8): 1595-1598. doi: 10.3969/j.issn.1001-5256.2017.08.040 |
[19] | Zhang Qian, Han Tao. Research progress in advanced oxidation protein products in liver diseases[J]. Journal of Clinical Hepatology, 2013, 29(8): 581-584. doi: 10.3969/j.issn.1001-5256.2013.08.007 |
[20] | Zhang Zhe, Guo JinSheng. The role of high mobility group box 1 in human liver diseases[J]. Journal of Clinical Hepatology, 2011, 27(10): 1116-1120. |
1. | 焦靖雯,王蓉芝,王琳雳,于云飞,李宝龙. Nrf2在铁死亡调控中的关键作用及其在非酒精性脂肪肝病中的潜在应用研究进展. 中国医药导报. 2025(03): 69-72 . ![]() |