[1] |
RUIZ LM, LIBEDINSKY A, ELORZA AA. Role of copper on mitochondrial function and metabolism[J]. Front Mol Biosci, 2021, 8: 711227. DOI: 10.3389/fmolb.2021.711227.
|
[2] |
MICHNIEWICZ F, SALETTA F, ROUAEN JRC, et al. Copper: An intracellular Achilles’ heel allowing the targeting of epigenetics, kinase pathways, and cell metabolism in cancer therapeutics[J]. ChemMedChem, 2021, 16( 15): 2315- 2329. DOI: 10.1002/cmdc.202100172.
|
[3] |
TSVETKOV P, COY S, PETROVA B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375( 6586): 1254- 1261. DOI: 10.1126/science.abf0529.
|
[4] |
SALEH SAK, ADLY HM, ABDELKHALIQ AA, et al. Serum levels of selenium, zinc, copper, manganese, and iron in prostate cancer patients[J]. Curr Urol, 2020, 14( 1): 44- 49. DOI: 10.1159/000499261.
|
[5] |
CHEN J, JIANG YH, SHI H, et al. The molecular mechanisms of copper metabolism and its roles in human diseases[J]. Pflugers Arch, 2020, 472( 10): 1415- 1429. DOI: 10.1007/s00424-020-02412-2.
|
[6] |
BRADY DC, CROWE MS, TURSKI ML, et al. Copper is required for oncogenic BRAF signalling and tumorigenesis[J]. Nature, 2014, 509( 7501): 492- 496. DOI: 10.1038/nature13180.
|
[7] |
TURSKI ML, BRADY DC, KIM HJ, et al. A novel role for copper in Ras/mitogen-activated protein kinase signaling[J]. Mol Cell Biol, 2012, 32( 7): 1284- 1295. DOI: 10.1128/MCB.05722-11.
|
[8] |
XU WJ, BARRIENTOS T, ANDREWS NC. Iron and copper in mitochondrial diseases[J]. Cell Metab, 2013, 17( 3): 319- 328. DOI: 10.1016/j.cmet.2013.02.004.
|
[9] |
LILL R, FREIBERT SA. Mechanisms of mitochondrial iron-sulfur protein biogenesis[J]. Annu Rev Biochem, 2020, 89: 471- 499. DOI: 10.1146/annurev-biochem-013118-111540.
|
[10] |
TANG DL, CHEN X, KROEMER G. Cuproptosis: A copper-triggered modality of mitochondrial cell death[J]. Cell Res, 2022, 32( 5): 417- 418. DOI: 10.1038/s41422-022-00653-7.
|
[11] |
LI SR, BU LL, CAI LL. Cuproptosis: Lipoylated TCA cycle proteins-mediated novel cell death pathway[J]. Signal Transduct Target Ther, 2022, 7( 1): 158. DOI: 10.1038/s41392-022-01014-x.
|
[12] |
FESTA RA, THIELE DJ. Copper: An essential metal in biology[J]. Curr Biol, 2011, 21( 21): R877- R883. DOI: 10.1016/j.cub.2011.09.040.
|
[13] |
SAPORITO-MAGRIÑÁ CM, MUSACCO-SEBIO RN, ANDRIEUX G, et al. Copper-induced cell death and the protective role of glutathione: The implication of impaired protein folding rather than oxidative stress[J]. Metallomics, 2018, 10( 12): 1743- 1754. DOI: 10.1039/c8mt00182k.
|
[14] |
XU JJ, JI L, RUAN YL, et al. UBQLN1 mediates sorafenib resistance through regulating mitochondrial biogenesis and ROS homeostasis by targeting PGC1β in hepatocellular carcinoma[J]. Signal Transduct Target Ther, 2021, 6( 1): 190. DOI: 10.1038/s41392-021-00594-4.
|
[15] |
LELIÈVRE P, SANCEY L, COLL JL, et al. The multifaceted roles of copper in cancer: A trace metal element with dysregulated metabolism, but also a target or a bullet for therapy[J]. Cancers, 2020, 12( 12): 3594. DOI: 10.3390/cancers12123594.
|
[16] |
LIAN WB, YANG PD, LI LQ, et al. A ceRNA network-mediated over-expression of cuproptosis-related gene SLC31A1 correlates with poor prognosis and positive immune infiltration in breast cancer[J]. Front Med, 2023, 10: 1194046. DOI: 10.3389/fmed.2023.1194046.
|
[17] |
SHANBHAG VC, GUDEKAR N, JASMER K, et al. Copper metabolism as a unique vulnerability in cancer[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868( 2): 118893. DOI: 10.1016/j.bbamcr.2020.118893.
|
[18] |
OLIVERI V. Selective targeting of cancer cells by copper ionophores: An overview[J]. Front Mol Biosci, 2022, 9: 841814. DOI: 10.3389/fmolb.2022.841814.
|
[19] |
HUNSAKER EW, FRANZ KJ. Emerging opportunities to manipulate metal trafficking for therapeutic benefit[J]. Inorg Chem, 2019, 58( 20): 13528- 13545. DOI: 10.1021/acs.inorgchem.9b01029.
|
[20] |
KANNAPPAN V, ALI MS, SMALL B, et al. Recent advances in repurposing disulfiram and disulfiram derivatives as copper-dependent anticancer agents[J]. Front Mol Biosci, 2021, 8: 741316. DOI: 10.3389/fmolb.2021.741316.
|
[21] |
SKROTT Z, MISTRIK M, ANDERSEN KK, et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4[J]. Nature, 2017, 552( 7684): 194- 199. DOI: 10.1038/nature25016.
|
[22] |
CHEN LY, MIN JX, WANG FD. Copper homeostasis and cuproptosis in health and disease[J]. Signal Transduct Target Ther, 2022, 7( 1): 378. DOI: 10.1038/s41392-022-01229-y.
|
[23] |
BALDARI S, di ROCCO G, TOIETTA G. Current biomedical use of copper chelation therapy[J]. Int J Mol Sci, 2020, 21( 3): 1069. DOI: 10.3390/ijms21031069.
|
[24] |
WANG YX, ZHU W, JIAO Y, et al. Research progress in regulatory effect of copper transporters on radiation injury and its mechanism[J]. J Jilin Univ Med Ed, 2023, 49( 4): 1076- 1082. DOI: 10.13481/j.1671-587X.20230432.
王议贤, 朱巍, 焦旸, 等. 铜离子转运蛋白参与辐射损伤的调控作用及其机制的研究进展[J]. 吉林大学学报(医学版), 2023, 49( 4): 1076- 1082. DOI: 10.13481/j.1671-587X.20230432.
|
[25] |
SCHILSKY ML. Wilson disease: Diagnosis, treatment, and follow-up[J]. Clin Liver Dis, 2017, 21( 4): 755- 767. DOI: 10.1016/j.cld.2017.06.011.
|
[26] |
CHEN LJ, LIU DL, TAN YY. Research progress in cuproptosis in liver cancer[J]. J Cent South Univ Med Sci, 2023, 48( 9): 1368- 1376. DOI: 10.11817/j.issn.1672-7347.2023.230083.
陈蕾洁, 刘德良, 谭玉勇. 铜死亡在肝癌中的研究进展[J]. 中南大学学报(医学版), 2023, 48( 9): 1368- 1376. DOI: 10.11817/j.issn.1672-7347.2023.230083.
|
[27] |
SHAO SQ, SI JX, SHEN YQ. Copper as the target for anticancer nanomedicine[J]. Adv Ther, 2019, 2( 5): 1800147. DOI: 10.1002/adtp.201800147.
|
[28] |
DAVIS CI, GU XX, KIEFER RM, et al. Altered copper homeostasis underlies sensitivity of hepatocellular carcinoma to copper chelation[J]. Metallomics, 2020, 12( 12): 1995- 2008. DOI: 10.1039/d0mt00156b.
|
[29] |
GE EJ, BUSH AI, CASINI A, et al. Connecting copper and cancer: From transition metal signalling to metalloplasia[J]. Nat Rev Cancer, 2022, 22( 2): 102- 113. DOI: 10.1038/s41568-021-00417-2.
|
[30] |
LI J. The molecular mechanism of Disulfiram/Copper complex(CuET) inhibiting proliferation and inducing apoptosis in hepatocellular carcinoma cells[D]. Chongqing: Army Medical University, 2021.
黎婕. 双硫仑/铜复合物(CuET)抑制肝癌细胞增殖诱导细胞凋亡的分子机制研究[D]. 重庆: 中国人民解放军陆军军医大学, 2021.
|
[31] |
LI Y, WANG LH, ZHANG HT, et al. Disulfiram combined with copper inhibits metastasis and epithelial-mesenchymal transition in hepatocellular carcinoma through the NF-κB and TGF-β pathways[J]. J Cell Mol Med, 2018, 22( 1): 439- 451. DOI: 10.1111/jcmm.13334.
|
[32] |
CHIBA T, SUZUKI E, YUKI K, et al. Disulfiram eradicates tumor-initiating hepatocellular carcinoma cells in ROS-p38 MAPK pathway-dependent and-independent manners[J]. PLoS One, 2014, 9( 1): e84807. DOI: 10.1371/journal.pone.0084807.
|
[33] |
REN XY, LI YC, ZHOU Y, et al. Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis[J]. Redox Biol, 2021, 46: 102122. DOI: 10.1016/j.redox.2021.102122.
|
[34] |
YANG M, WU XX, HU JL, et al. COMMD10 inhibits HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe balance in hepatocellular carcinoma[J]. J Hepatol, 2022, 76( 5): 1138- 1150. DOI: 10.1016/j.jhep.2022.01.009.
|
[35] |
GUTTMANN S, CHANDHOK G, GROBA SR, et al. Organic cation transporter 3 mediates cisplatin and copper cross-resistance in hepatoma cells[J]. Oncotarget, 2018, 9( 1): 743- 754. DOI: 10.18632/oncotarget.23142.
|
[36] |
KELLAND L. The resurgence of platinum-based cancer chemotherapy[J]. Nat Rev Cancer, 2007, 7( 8): 573- 584. DOI: 10.1038/nrc2167.
|
[37] |
SHANG YX, LUO MY, YAO FP, et al. Ceruloplasmin suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma cells[J]. Cell Signal, 2020, 72: 109633. DOI: 10.1016/j.cellsig.2020.109633.
|
[38] |
SHAO JJ, LI MM, GUO ZJ, et al. TPP-related mitochondrial targeting copper(II) complex induces p53-dependent apoptosis in hepatoma cells through ROS-mediated activation of Drp1[J]. Cell Commun Signal, 2019, 17( 1): 149. DOI: 10.1186/s12964-019-0468-6.
|
[39] |
JIN C, LI YJ, SU Y, et al. Novel copper complex CTB regulates methionine cycle induced TERT hypomethylation to promote HCC cells senescence via mitochondrial SLC25A26[J]. Cell Death Dis, 2020, 11( 10): 844. DOI: 10.1038/s41419-020-03048-x.
|
[40] |
MENG Y, DONG BL, DONG XH, et al. Expressions of cuproptosis-related genes in hepatocellular carcinoma and their clinical significance[J]. Chin J Gen Surg, 2023, 32( 1): 74- 86. DOI: 10.7659/j.issn.1005-6947.2023.01.006.
孟云, 董保龙, 董晓骅, 等. 铜死亡相关基因在肝细胞癌中的表达及其临床意义[J]. 中国普通外科杂志, 2023, 32( 1): 74- 86. DOI: 10.7659/j.issn.1005-6947.2023.01.006.
|
[41] |
MA JJ, XIONG YQ, WANG B, et al. Construction and evaluation of prognostic model with cuproptosis-related lncRNA in hepatocellular carcinoma[J]. J Evid Based Med, 2023, 23( 3): 156- 168. DOI: 10.12019/j.issn.1671-5144.2023.03.004.
马健钧, 熊永强, 王博, 等. 肝细胞癌铜死亡相关lncRNA预后模型的构建及评估[J]. 循证医学, 2023, 23( 3): 156- 168. DOI: 10.12019/j.issn.1671-5144.2023.03.004.
|
[42] |
SHRIBMAN S, MARJOT T, SHARIF A, et al. Investigation and management of Wilson's disease: A practical guide from the British Association for the Study of the Liver[J]. Lancet Gastroenterol Hepatol, 2022, 7( 6): 560- 575. DOI: 10.1016/S2468-1253(22)00004-8.
|
[43] |
GEROSA C, FANNI D, CONGIU T, et al. Liver pathology in Wilson’s disease: From copper overload to cirrhosis[J]. J Inorg Biochem, 2019, 193: 106- 111. DOI: 10.1016/j.jinorgbio.2019.01.008.
|
[44] |
SANDAHL TD, LAURSEN TL, MUNK DE, et al. The prevalence of Wilson’s disease: An update[J]. Hepatology, 2020, 71( 2): 722- 732. DOI: 10.1002/hep.30911.
|
[45] |
GUNJAN D, SHALIMAR, NADDA N, et al. Hepatocellular carcinoma: An unusual complication of longstanding Wilson disease[J]. J Clin Exp Hepatol, 2017, 7( 2): 152- 154. DOI: 10.1016/j.jceh.2016.09.012.
|
[46] |
GU M, COOPER JM, BUTLER P, et al. Oxidative-phosphorylation defects in liver of patients with Wilson's disease[J]. Lancet, 2000, 356( 9228): 469- 474. DOI: 10.1016/s0140-6736(00)02556-3.
|
[47] |
CHEN Y, JIANG YP. Metabolism of ceruloplasmin and clinical manifestation of hypoceruloplasminemia[J]. Chin J Clin Neurosci, 2006, 14( 1): 86- 89. DOI: 10.3969/j.issn.1008-0678.2006.01.020.
陈嬿, 蒋雨平. 铜蓝蛋白的代谢和低铜蓝蛋白血症的临床表现[J]. 中国临床神经科学, 2006, 14( 1): 86- 89. DOI: 10.3969/j.issn.1008-0678.2006.01.020.
|
[48] |
CHEN SR, CHONG YT, LI XH. Pathogenic mechanism and clinical diagnosis of hereditary abnormal copper metabolism[J]. J Clin Hepatol, 2019, 35( 8): 1667- 1672. DOI: 10.3969/j.issn.1001-5256.2019.08.003.
陈淑如, 崇雨田, 李新华. 遗传性铜代谢异常的致病机制及临床诊断[J]. 临床肝胆病杂志, 2019, 35( 8): 1667- 1672. DOI: 10.3969/j.issn.1001-5256.2019.08.003.
|
[49] |
OKAMOTO N, WADA S, OGA T, et al. Hereditary ceruloplasmin deficiency with hemosiderosis[J]. Hum Genet, 1996, 97( 6): 755- 758. DOI: 10.1007/BF02346185.
|
[50] |
AIGNER E, STRASSER M, HAUFE H, et al. A role for low hepatic copper concentrations in nonalcoholic fatty liver disease[J]. Am J Gastroenterol, 2010, 105( 9): 1978- 1985. DOI: 10.1038/ajg.2010.170.
|
[51] |
LIU T, LIU YL, ZHANG FY, et al. Association of copper metabolism disorder with cell damage and liver diseases[J]. J Clin Hepatol, 2023, 39( 9): 2244- 2251. DOI: 10.3969/j.issn.1001-5256.2023.09.032.
柳涛, 刘雅丽, 张飞宇, 等. 铜代谢失调与细胞损伤及肝病的关系[J]. 临床肝胆病杂志, 2023, 39( 9): 2244- 2251. DOI: 10.3969/j.issn.1001-5256.2023.09.032.
|
[52] |
ZHANG CY, YANG M. Current options and future directions for NAFLD and NASH treatment[J]. Int J Mol Sci, 2021, 22( 14): 7571. DOI: 10.3390/ijms22147571.
|
[53] |
DEV S, MUCHENDITSI A, GOTTLIEB A, et al. Oxysterol misbalance critically contributes to Wilson disease pathogenesis[J]. Sci Adv, 2022, 8( 42): eadc9022. DOI: 10.1126/sciadv.adc9022.
|
[54] |
TOSCO A, FONTANELLA B, DANISE R, et al. Molecular bases of copper and iron deficiency-associated dyslipidemia: A microarray analysis of the rat intestinal transcriptome[J]. Genes Nutr, 2010, 5( 1): 1- 8. DOI: 10.1007/s12263-009-0153-2.
|
[55] |
LAN YQ, WU SL, WANG YH, et al. Association between blood copper and nonalcoholic fatty liver disease according to sex[J]. Clin Nutr, 2021, 40( 4): 2045- 2052. DOI: 10.1016/j.clnu.2020.09.026.
|
[56] |
WU CT, LIU XX, ZHONG LX, et al. Identification of cuproptosis-related genes in nonalcoholic fatty liver disease[J]. Oxid Med Cell Longev, 2023, 2023: 9245667. DOI: 10.1155/2023/9245667.
|
[57] |
MERAM I, SIRMATEL F, AHI S, et al. Plasma copper and zinc levels in chronic viral hepatitis[J]. Saudi Med J, 2004, 25( 8): 1066- 1069.
|
[58] |
CESUR S, CEBECI SA, KAVAS GO, et al. Serum copper and zinc concentrations in patients with chronic hepatitis B[J]. J Infect, 2005, 51( 1): 38- 40. DOI: 10.1016/j.jinf.2004.08.012.
|
[59] |
POZNAŃSKI J, SOŁDACKI D, CZARKOWSKA-PĄCZEK B, et al. Cirrhotic liver of liver transplant recipients accumulate silver and co-accumulate copper[J]. Int J Mol Sci, 2021, 22( 4): 1782. DOI: 10.3390/ijms22041782.
|
[60] |
DASTYCH M, HUSOVÁ L, AIGLOVÁ K, et al. Manganese and copper levels in patients with primary biliary cirrhosis and primary sclerosing cholangitis[J]. Scand J Clin Lab Invest, 2021, 81( 2): 116- 120. DOI: 10.1080/00365513.2020.1864835.
|
[61] |
WANG YQ, ZHOU Q, SHAO JG, et al. Bioinformatics analysis of Acute-on-chronic liver failure based on the expression of cuproptosis-related genes[J]. Mod Dig Interv, 2023, 28( 1): 50- 56. DOI: 10.3969/j.issn.1672-2159.2023.01.011.
王艳秋, 周倩, 邵建国, 等. 基于铜死亡相关基因的慢加急性肝衰竭的机制研究[J]. 现代消化及介入诊疗, 2023, 28( 1): 50- 56. DOI: 10.3969/j.issn.1672-2159.2023.01.011.
|