
非酒精性脂肪性肝病(NAFLD)病理谱包括单纯性脂肪肝(NAFL)、非酒精性脂肪性肝炎(NASH)及其相关肝硬化和肝细胞癌[1]。全球流行病学调查的荟萃分析[2]表明,NAFLD的发病率在22%~28%,并且呈逐年上升趋势。近年来,随着人民群众生活水平的逐渐提高和传统饮食结构的改变,NAFLD已成为我国第一大慢性肝病,发病率占肝脏疾病的近50%,严重威胁人民健康。NAFLD的治疗包括生活方式改变和药物治疗两种,减肥、地中海饮食和体育活动等生活方式成为治疗NAFLD的基础[3],药物治疗主要包括胰岛素增敏剂、降脂药、保肝抗炎药物等。但由于NAFLD常伴随代谢异常,西药的单靶点治疗往往得不到很好的疗效,目前尚没有经美国食品药品监督管理局批准的NAFLD药物,NAFLD可持续进展为肝硬化及肝癌,进而对社会公共医疗资源造成重大负担。然而,最近已经发表了胰高血糖素样肽-1(GLP-1)激动剂、法尼醇X受体(FXR)和过氧化物酶体增殖物激活受体(PPAR)配体以及其他药物的随机对照试验,并可能会在不久的将来扩大NAFLD的治疗药物[4]。
金雀异黄素(4′,5,7-trihydroxyisoflavone,Genistein)富含于大豆和鹰嘴豆等豆科植物,是一种强效的植物雌激素。药理作用包括抗骨质疏松、抗癌、改善心血管功能和缓解更年期综合征[5-6]。研究[7-8]发现补充植物雌激素可在改善胰岛素抵抗、降低血脂、抗炎和抗氧化方面发挥显著作用,然而,胰岛素抵抗、血脂异常、炎症等诱因会促进NAFLD的形成。
流行病学调查,绝经后妇女患有NAFLD风险更高且比例在全球范围内逐年增加[9]。本实验通过高脂饮食喂养建立卵巢摘除(ovariectomy,OVX)后雌激素缺乏的NAFLD小鼠模型[10],研究Genistein对NAFLD小鼠体质量、肝质量、ALT、AST及血脂等指标的影响,考察Genistein对脂质代谢相关蛋白的调控,旨在探讨Genistein对OVX小鼠NAFLD的作用及分子机制。
本研究所用主要仪器包括超纯水机(美国Millipore公司)、-80 ℃超低温冰箱和SIM-F140制冰机(日本三洋公司)、Forma311细胞培养箱(美国Thermo Fisher Scientific公司)、荧光倒置显微镜(日本Olympus公司)、Pannoramic切片扫描仪(匈牙利3DHISTECH公司)、Bioshine ChemiO4600电泳仪电源和Mini-PROTEAN Tetra垂直电泳槽(美国BIO-RAD公司)、MQX200型酶标仪(美国BioTek公司)、Allegra X-22R离心机和Allegrax-15R型高速离心机(美国贝克曼公司)、ChemiDoc™MP成像系统(美国BIO-RAD公司)。
Genistein(CAS号:446-72-0,包装规格:5 g,纯度:≥98%)购买于阿拉丁。正常饮食(TP26312;TROPHIC,南通,中国)包括10%来自脂肪的卡路里,20%来自蛋白质的卡路里,70%来自碳水化合物的卡路里(3.5 kcal/g的饮食)组成。高脂饮食(TP26300;TROPHIC,南通,中国)包括42%来自脂肪的卡路里,15%来自蛋白质的卡路里,43%来自碳水化合物的卡路里(4.5 kcal/g的饮食)。总胆固醇(TC)试剂盒(中国,南京建成生物工程研究所,货号A111-1-1)、甘油三酯(TG)试剂盒(中国,南京建成生物工程研究所,货号A110-1-1);BCA蛋白检测试剂盒(中国,Solarbio生物科技有限公司,货号PC0020);SREBP-1c抗体(美国,Santa Cruz Bio Technology,货号bs1402R);PPARα(英国,Abcam公司,货号ab126285);β-actin(英国,Abcam公司,货号ab179467)和相应的二抗;ECL化学发光试剂盒(美国,Thermo Fisher Scientific公司,货号WBKLS0500)。
80只SPF级雌性C57BL/6小鼠,6周龄,17~19 g,购于安徽医科大学实验动物中心,实验动物生产许可证号:SCXK(皖)2022-001,实验动物使用许可证号:SYXK(皖)2022-004。向动物提供不受限制的食物和水,将其饲养在温度(23±2)℃和(55±10)%相对湿度控制的房间内,并保持12 h光照/12 h黑暗周期。饲养1周熟悉环境后用于实验。
将小鼠采用戊巴比妥钠(0.04 mg/g)麻醉并置于加热垫上。剃掉腹部皮肤,用75%酒精清洗暴露的皮肤,再用10%聚维酮碘擦洗。在无菌条件下进行小的背侧切口。结扎卵巢动脉,取出双侧卵巢。Sham组进行相同的OVX手术过程,但不结扎卵巢动脉和切除卵巢。术后使用4-0无菌缝线闭合伤口以修复切割的肌肉层,并且用青霉素-G普鲁卡因(0.2 mL,20 000 IU)肌肉注射,每只小鼠1次[10]。全部小鼠术后恢复1周。此时,小鼠为8周龄,其生殖发育完全可用于实验研究[11]。
取40只OVX小鼠完全随机分组分为5组,每组8只,分别为对照组、模型4周组、模型6周组、模型8周组、模型10周组。相同环境下,采用高脂饮食对5组OVX小鼠进行饮食造模,分别在高脂饮食0、4、6、8、10周后处死不同组小鼠,快速分离肝脏并称重,然后将其固定在4%多聚甲醛中进行组织HE染色病理学检查,观察NAFLD造模成功情况。
另取40只小鼠随机分为5组:空白组、假手术(Sham)组、OVX组、OVX+L-Genistein(4 mg/kg体质量)组、OVX+H-Genistein(8 mg/kg体质量)组,每组8只(空白组和OVX+L-Genistein组各有1只小鼠因操作不当死亡)。所有小鼠自由饮水,空白组小鼠正常饮食喂养,其余各组供给高脂饮食。将Genistein溶解在DMSO中,Sham组和OVX组的动物仅用溶媒溶液处理,所有小鼠每天上午8∶00灌胃给药,持续10周,每周测量体质量。
每组随机挑选6只小鼠,将小鼠麻醉后腹主动脉抽取血液,分离血清用于检测TC、TG含量。
小鼠安乐处死后,打开腹腔,取出完整肝脏,去除肝脏周围的结缔组织,采用生理盐水清洗干净,吸水纸去除水分,电子天平称量肝质量,计算肝指数。肝指数=肝质量/体质量。
每组随机挑选6只小鼠,留取肝左叶同一部位肝组织,清洗后置于4%多聚甲醛,脱水后进行石蜡包埋,用切片机将其切成5 μm厚切片,常规HE染色。采用冰冻切片进行油红O染色;透明密封后在光学显微镜下观察各切片肝组织病理情况以及肝脂肪颗粒沉积情况。
每组随机挑选6只小鼠,将肝脏组织加RIPA裂解液提取蛋白,BCA法测定总蛋白浓度。每个样品取等量蛋白20 μg电泳、转膜。室温下用5%脱脂奶粉封闭2 h后分别加入一抗SREBP-1c(1∶1 000)、PPARα(1∶1 000)、β-actin(1∶2 000),4 ℃孵育过夜。洗膜后加入二抗(1∶8 000),室温孵育2 h。TBST洗膜后加ECL试剂显影成像。使用Image J软件对条带灰度值进行量化分析。
采用SPSS 17.0软件进行统计分析。计量资料以
与对照组比较,高脂饮食4周后小鼠肝组织尚未出现脂肪变性;6~8周后细胞核周围出现明显的脂质物质堆积;持续到10周后肝细胞内出现明显的脂肪大泡。HE染色结果表现为随着高脂饮食时间的延长肝细胞脂质堆积逐渐增加(图1)。证明OVX小鼠经高脂饮食诱导NAFLD成功。
与空白组小鼠相比,Sham组小鼠的体质量和肝指数分别比空白组增加了1.11倍和1.14倍(P值均<0.05)。在相同高脂饮食情况下,与Sham组相比,OVX组的体质量和肝指数分别增加了1.15倍和1.09倍(P值均<0.05);与OVX组相比,OVX+H-Genistein组的体质量和肝指数分别降低了1.13倍和1.07倍(P值均<0.05),OVX+L-Genistein组的体质量和肝指数分别降低了1.07倍和1.05倍(P值均<0.05)(表1)。综上,Genistein处理能显著降低卵巢摘除的NAFLD小鼠体质量及肝质量,并降低小鼠的肝脏系数。
组别 | 动物数(只) | 体质量(g) | 肝质量(g) | 肝指数(%) |
---|---|---|---|---|
空白组 | 6 | 24.15±0.45 | 1.03±0.05 | 4.26±0.15 |
Sham组 | 6 | 26.91±0.361) | 1.31±0.041) | 4.86±0.141) |
OVX组 | 6 | 30.92±0.892) | 1.63±0.042) | 5.28±0.142) |
OVX+L-Genistein组 | 6 | 28.91±0.353) | 1.46±0.043) | 5.05±0.133) |
OVX+H-Genistein组 | 6 | 27.36±0.523) | 1.35±0.033) | 4.92±0.103) |
F值 | 18.225 | 15.919 | 8.529 | |
P值 | <0.05 | <0.05 | <0.05 | |
注:与空白组比较,1)P<0.05;与Sham组比较,2)P<0.05;与OVX组比较,3)P<0.05。 |
与Sham组相比,OVX组小鼠TC、TG水平明显升高(P值均<0.01);与OVX组相比,Genistein各剂量组均不同程度地降低了NAFLD小鼠血清TC、TG水平(P值均<0.05)(图2)。
与Sham组相比,OVX组小鼠血清中AST、ALT水平显著升高(P值均<0.05),表明高脂饮食下OVX组小鼠肝细胞受损严重。与OVX组比较,Genistein各剂量组小鼠血清 AST、ALT水平显著降低(P值均<0.05)(图3)。
HE染色结果显示,空白组小鼠肝组织细胞形态正常,边界清晰,排列整齐,细胞质未见溶解和空泡;与Sham组相比,OVX组小鼠肝脏组织排列混乱,细胞间隙含有脂肪空泡,可见较大的脂质液滴空泡,出现脂肪肝堆积病变;Genistein高、低剂量组小鼠肝组织脂肪空泡较OVX组明显减少,脂肪堆积明显改善,显著降低了小鼠肝脏的脂肪变性程度。油红O染色结果显示,与空白组比较,Sham组肝脏切片中观察到明显增多的红色脂滴,OVX组红色脂滴更明显呈扩散和颗粒状;与OVX组比较,Genistein低、高剂量组脂滴累积明显减少(图4)。
通过Western Blot分析对蛋白进行定量,发现OVX小鼠肝脏中SREBP-1c蛋白表达量高于Sham组小鼠(P<0.05),PPARα蛋白表达量低于Sham组小鼠(P<0.05);与OVX组比较,给予Genistein干预后,SREBP-1c的蛋白表达量明显下降(P值均<0.05),PPARα的蛋白表达量明显升高(P值均<0.05)(图5)。
NAFLD是一种在世界范围内广泛流行的慢性肝病,是发达国家人群肝酶升高的主要原因[12]。目前NAFLD的病因机制尚未完全阐明,“二次打击理论”是目前最为广泛接受的理论。第一个“打击”是肝细胞中的脂肪积累,这标志着NASH发展的第一阶段。第二个“打击”是炎症细胞因子、氧化应激或内毒素等加重因素,这些因素会导致肝细胞损伤[13]。NASH治疗的一个主要问题是缺乏有效的药物,通常建议通过饮食和锻炼减肥进行调理,然而,这种方法的有效性尚存在争议[14]。
NAFLD常伴随体质量和血清TC、TG等生化指标改变,肝细胞可以葡萄糖为原料合成TG,也可利用食物及脂肪组织动员的脂肪酸合成TG,TG与TC、磷脂、蛋白等结合而形成极低密度脂蛋白(TG是其主要成分),极低密度脂蛋白进入血液或储存在脂滴中,当脂肪酸供应过量时可作为脂肪毒性物质产生的底物引起内质网应激和肝细胞损伤,导致游离脂肪酸氧化和极低密度脂蛋白减少,TG运出肝细胞减少,导致TG在肝细胞基质代谢过程中脂质沉积,加重肝脏的脂肪变性,诱发NAFLD的病理形成[15]。因此检测血脂TC、TG的水平,可作为评估NAFLD病理进程的重要指标。本研究显示,Genistein给药后,血清中TC、TG水平较OVX组显著下降,证明Genistein可通过改善高脂饮食OVX小鼠高血脂症,延缓NAFLD的病理进程。同时,能降低卵巢摘除的NAFLD小鼠体质量及肝质量,并降低小鼠的肝脏系数,缓解肝细胞中的脂肪积累。
在本研究中,OVX小鼠NAFLD模型再现了人类NAFLD的几种典型病因和组织病理学特征,如转氨酶异常、组织学表现为脂肪变性。在临床上,肝脂肪变性是NAFLD的标志性特征,同时伴随血清中AST、ALT水平升高[16]。AST/ALT比值也能反映肝炎患者的病理进程,实验中高脂饮食诱导的OVX小鼠模型与Sham组比较,AST上升了243.7%,ALT上升了165.7%,AST/ALT=1.47,结果表明OVX小鼠成功诱导产生中度、重度慢性脂肪肝。经过给予OVX小鼠不同剂量的Genistein,均出现抑制血清中AST、ALT水平上升的现象,表明Genistein对OVX小鼠肝细胞有良好的保护作用,减缓了NASH的发展。
SREBP-1c是具有调控肝脏脂质代谢作用的固醇合成相关基因,是调控肝细胞内脂质蓄积的重要因子,可调节下游脂肪酸合成酶、乙酰辅酶A羧化酶等靶基因的表达从而调控机体脂代谢。SREBP-1c过度表达可导致肝细胞脂肪酸合成增加,促使三酰甘油、脂肪酸在肝细胞蓄积,诱发脂肪肝[10]。下调SREBP-1c的表达,进而抑制参与脂肪生成相关转录因子的表达,可减少脂肪酸的合成和脂质积累,改善肝脂肪病变[17]。PPARα是调控脂质代谢的重要转录因子,其参与脂肪酸摄取、转运、β氧化、脂质合成、酮体生成和脂蛋白与胆固醇代谢等过程。激活PPARα可减少氧化应激以及IL-6、TNF-α等炎症因子释放,甚至增加脂质自噬以减少肝脏脂肪堆积,改善NAFLD[10]。本研究显示,Genistein可以降低SREBP-1c表达、升高PPARα表达,改善脂肪生产与脂质代谢。
该方向的课题研究多以NAFLD模型为基础,本研究针对不同患者群体,采用OVX小鼠NAFLD模型模拟绝经后妇女NAFLD,证实Genstein可改善OVX小鼠NAFLD的肝功能,调节脂质合成与代谢,延缓高脂饮食引起的NAFLD症状,认为Genstein对绝经后妇女的NAFLD具有改善作用。
[1] |
MUNDI MS, VELAPATI S, PATEL J, et al. Evolution of NAFLD and its management[J]. Nutr Clin Pract, 2020, 35( 1): 72- 84. DOI: 10.1002/ncp.10449.
|
[2] |
KAUFMANN B, RECA A, WANG B, et al. Mechanisms of nonalcoholic fatty liver disease and implications for surgery[J]. Langenbecks Arch Surg, 2021, 406( 1): 1- 17. DOI: 10.1007/s00423-020-01965-1.
|
[3] |
POUWELS S, SAKRAN N, GRAHAM Y, et al. Non-alcoholic fatty liver disease(NAFLD): A review of pathophysiology, clinical management and effects of weight loss[J]. BMC Endocr Disord, 2022, 22( 1): 63. DOI: 10.1186/s12902-022-00980-1.
|
[4] |
FRIEDMAN SL, NEUSCHWANDER-TETRI BA, RINELLA M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24( 7): 908- 922. DOI: 10.1038/s41591-018-0104-9.
|
[5] |
XU XH, POULSEN KL, WU LJ, et al. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis(NAFL/NASH)[J]. Signal Transduct Target Ther, 2022, 7( 1): 287. DOI: 10.1038/s41392-022-01119-3.
|
[6] |
GOLDSTEIN JL, DEBOSE-BOYD RA, BROWN MS. Protein sensors for membrane sterols[J]. Cell, 2006, 124( 1): 35- 46. DOI: 10.1016/j.cell.2005.12.022.
|
[7] |
ARAKI M, NAKAGAWA Y, SAITO H, et al. Hepatocyte- or macrophage-specific SREBP-1a deficiency in mice exacerbates methionine- and choline-deficient diet-induced nonalcoholic fatty liver disease[J]. Am J Physiol Gastrointest Liver Physiol, 2022, 323( 6): G627- G639. DOI: 10.1152/ajpgi.00090.2022.
|
[8] |
SATO R. Sterol metabolism and SREBP activation[J]. Arch Biochem Biophys, 2010, 501( 2): 177- 181. DOI: 10.1016/j.abb.2010.06.004.
|
[9] |
NAKAGAWA Y, ARAKI M, HAN SI, et al. CREBH systemically regulates lipid metabolism by modulating and integrating cellular functions[J]. Nutrients, 2021, 13( 9): 3204. DOI: 10.3390/nu13093204.
|
[10] |
JEON YG, KIM YY, LEE G, et al. Physiological and pathological roles of lipogenesis[J]. Nat Metab, 2023, 5( 5): 735- 759. DOI: 10.1038/s42255-023-00786-y.
|
[11] |
MARGERIE D, LEFEBVRE P, RAVERDY V, et al. Hepatic transcriptomic signatures of statin treatment are associated with impaired glucose homeostasis in severely obese patients[J]. BMC Med Genomics, 2019, 12( 1): 80. DOI: 10.1186/s12920-019-0536-1.
|
[12] |
IPSEN DH, LYKKESFELDT J, TVEDEN-NYBORG P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease[J]. Cell Mol Life Sci, 2018, 75( 18): 3313- 3327. DOI: 10.1007/s00018-018-2860-6.
|
[13] |
GOLDSTEIN JL, BASU SK, BROWN MS. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells[J]. Methods Enzymol, 1983, 98: 241- 260. DOI: 10.1016/0076-6879(83)98152-1.
|
[14] |
NOHTURFFT A, DEBOSE-BOYD RA, SCHEEK S, et al. Sterols regulate cycling of SREBP cleavage-activating protein(SCAP) between endoplasmic reticulum and Golgi[J]. Proc Natl Acad Sci U S A, 1999, 96( 20): 11235- 11240. DOI: 10.1073/pnas.96.20.11235.
|
[15] |
HORTON JD, COHEN JC, HOBBS HH. Molecular biology of PCSK9: Its role in LDL metabolism[J]. Trends Biochem Sci, 2007, 32( 2): 71- 77. DOI: 10.1016/j.tibs.2006.12.008.
|
[16] |
MUSSO G, GAMBINO R, CASSADER M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis[J]. Prog Lipid Res, 2013, 52( 1): 175- 191. DOI: 10.1016/j.plipres.2012.11.002.
|
[17] |
CAROTTI S, AQUILANO K, ZALFA F, et al. Lipophagy impairment is associated with disease progression in NAFLD[J]. Front Physiol, 2020, 11: 850. DOI: 10.3389/fphys.2020.00850.
|
[18] |
ALLAIRE M, RAUTOU PE, CODOGNO P, et al. Autophagy in liver diseases: Time for translation?[J]. J Hepatol, 2019, 70( 5): 985- 998. DOI: 10.1016/j.jhep.2019.01.026.
|
[19] |
NGUYEN TTP, KIM DY, LEE YG, et al. SREBP-1c impairs ULK1 sulfhydration-mediated autophagic flux to promote hepatic steatosis in high-fat-diet-fed mice[J]. Mol Cell, 2021, 81( 18): 3820- 3832. DOI: 10.1016/j.molcel.2021.06.003.
|
[20] |
NGUYEN TTP, KIM DY, IM SS, et al. Impairment of ULK1 sulfhydration-mediated lipophagy by SREBF1/SREBP-1c in hepatic steatosis[J]. Autophagy, 2021, 17( 12): 4489- 4490. DOI: 10.1080/15548627.2021.1968608.
|
[21] |
IM SS, OSBORNE TF. Protection from bacterial-toxin-induced apoptosis in macrophages requires the lipogenic transcription factor sterol regulatory element binding protein 1a[J]. Mol Cell Biol, 2012, 32( 12): 2196- 2202. DOI: 10.1128/MCB.06294-11.
|
[22] |
LU D, PARISI LR, GOKCUMEN O, et al. SREBP activation contributes to fatty acid accumulations in necroptosis[J]. RSC Chem Biol, 2023, 4( 4): 310- 322. DOI: 10.1039/d2cb00172a.
|
[23] |
GUO CS, CHI ZX, JIANG DL, et al. Cholesterol homeostatic regulator SCAP-SREBP2 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in macrophages[J]. Immunity, 2018, 49( 5): 842- 856. DOI: 10.1016/j.immuni.2018.08.021.
|
[24] |
PETTINELLI P, DEL POZO T, ARAYA J, et al. Enhancement in liver SREBP-1c/PPAR-alpha ratio and steatosis in obese patients: Correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion[J]. Biochim Biophys Acta, 2009, 1792( 11): 1080- 1086. DOI: 10.1016/j.bbadis.2009.08.015.
|
[25] |
FUJII N, NARITA T, OKITA N, et al. Sterol regulatory element-binding protein-1c orchestrates metabolic remodeling of white adipose tissue by caloric restriction[J]. Aging Cell, 2017, 16( 3): 508- 517. DOI: 10.1111/acel.12576.
|
[26] |
SOUNDARARAJAN R, WISHART AD, VASANTHA RUPASINGHE HP, et al. Quercetin 3-glucoside protects neuroblastoma(SH-SY5Y) cells in vitro against oxidative damage by inducing sterol regulatory element-binding protein-2-mediated cholesterol biosynthesis[J]. J Biol Chem, 2008, 283( 4): 2231- 2245. DOI: 10.1074/jbc.M703583200.
|
[27] |
SHIMANO H, SATO R. SREBP-regulated lipid metabolism: Convergent physiology-divergent pathophysiology[J]. Nat Rev Endocrinol, 2017, 13( 12): 710- 730. DOI: 10.1038/nrendo.2017.91.
|
[28] |
DÜVEL K, YECIES JL, MENON S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1[J]. Mol Cell, 2010, 39( 2): 171- 183. DOI: 10.1016/j.molcel.2010.06.022.
|
[29] |
KOHJIMA M, HIGUCHI N, KATO M, et al. SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease[J]. Int J Mol Med, 2008, 21( 4): 507- 511.
|
[30] |
PUIGSERVER P, RHEE J, DONOVAN J, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction[J]. Nature, 2003, 423( 6939): 550- 555. DOI: 10.1038/nature01667.
|
[31] |
JUMP DB. Dietary polyunsaturated fatty acids and regulation of gene transcription[J]. Curr Opin Lipidol, 2002, 13( 2): 155- 164. DOI: 10.1097/00041433-200204000-00007.
|
[32] |
GNONI A, GIUDETTI AM. Dietary long-chain unsaturated fatty acids acutely and differently reduce the activities of lipogenic enzymes and of citrate carrier in rat liver[J]. J Physiol Biochem, 2016, 72( 3): 485- 494. DOI: 10.1007/s13105-016-0495-3.
|
[33] |
DONG QM, MAJUMDAR G, O’MEALLY RN, et al. Insulin-induced de novo lipid synthesis occurs mainly via mTOR-dependent regulation of proteostasis of SREBP-1c[J]. Mol Cell Biochem, 2020, 463( 1-2): 13- 31. DOI: 10.1007/s11010-019-03625-5.
|
[34] |
FLISTER KFT, PINTO BAS, FRANÇA LM, et al. Long-term exposure to high-sucrose diet down-regulates hepatic endoplasmic reticulum-stress adaptive pathways and potentiates de novo lipogenesis in weaned male mice[J]. J Nutr Biochem, 2018, 62: 155- 166. DOI: 10.1016/j.jnutbio.2018.09.007.
|
[35] |
YE J, RAWSON RB, KOMURO R, et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs[J]. Mol Cell, 2000, 6( 6): 1355- 1364. DOI: 10.1016/s1097-2765(00)00133-7.
|
[36] |
LEE JS, ZHENG Z, MENDEZ R, et al. Pharmacologic ER stress induces non-alcoholic steatohepatitis in an animal model[J]. Toxicol Lett, 2012, 211( 1): 29- 38. DOI: 10.1016/j.toxlet.2012.02.017.
|
[37] |
RÖHRL C, EIGNER K, WINTER K, et al. Endoplasmic reticulum stress impairs cholesterol efflux and synthesis in hepatic cells[J]. J Lipid Res, 2014, 55( 1): 94- 103. DOI: 10.1194/jlr.M043299.
|
[38] |
GILARDI F, MIGLIAVACCA E, NALDI A, et al. Genome-wide analysis of SREBP1 activity around the clock reveals its combined dependency on nutrient and circadian signals[J]. PLoS Genet, 2014, 10( 3): e1004155. DOI: 10.1371/journal.pgen.1004155.
|
[39] |
MARTELOT GL, CLAUDEL T, GATFIELD D, et al. REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis[J]. PLoS Biol, 2009, 7( 9): e1000181. DOI: 10.1371/journal.pbio.1000181.
|
[40] |
GUAN DY, BAE H, ZHOU DS, et al. Hepatocyte SREBP signaling mediates clock communication within the liver[J]. J Clin Invest, 2023, 133( 8): e163018. DOI: 10.1172/JCI163018.
|
[41] |
CHEN M, LIN YK, DANG YK, et al. Reprogramming of rhythmic liver metabolism by intestinal clock[J]. J Hepatol, 2023, 79( 3): 741- 757. DOI: 10.1016/j.jhep.2023.04.040.
|
[42] |
SHAO W, MACHAMER CE, ESPENSHADE PJ. Fatostatin blocks ER exit of SCAP but inhibits cell growth in a SCAP-independent manner[J]. J Lipid Res, 2016, 57( 8): 1564- 1573. DOI: 10.1194/jlr.M069583.
|
[43] |
LI YH, LUAN YS, LI JN, et al. Exosomal miR-199a-5p promotes hepatic lipid accumulation by modulating MST1 expression and fatty acid metabolism[J]. Hepatol Int, 2020, 14( 6): 1057- 1074. DOI: 10.1007/s12072-020-10096-0.
|
[44] |
LI YH, NIE JJ, YANG YH, et al. Redox-unlockable nanoparticle-based MST1 delivery system to attenuate hepatic steatosis via the AMPK/SREBP-1c signaling axis[J]. ACS Appl Mater Interfaces, 2022, 14( 30): 34328- 34341. DOI: 10.1021/acsami.2c05889.
|
[45] |
ASANO L, WATANABE M, RYODEN Y, et al. Vitamin D metabolite, 25-hydroxyvitamin D, regulates lipid metabolism by inducing degradation of SREBP/SCAP[J]. Cell Chem Biol, 2017, 24( 2): 207- 217. DOI: 10.1016/j.chembiol.2016.12.017.
|
[46] |
KAWAGOE F, MENDOZA A, HAYATA Y, et al. Discovery of a vitamin D receptor-silent vitamin D derivative that impairs sterol regulatory element-binding protein in vivo[J]. J Med Chem, 2021, 64( 9): 5689- 5709. DOI: 10.1021/acs.jmedchem.0c02179.
|
[47] |
ISHIBASHI H, NAKAGAWA K, ONIMARU M, et al. Sp1 decoy transfected to carcinoma cells suppresses the expression of vascular endothelial growth factor, transforming growth factor beta1, and tissue factor and also cell growth and invasion activities[J]. Cancer Res, 2000, 60( 22): 6531- 6536.
|
[48] |
AN HJ, KIM JY, GWON MG, et al. Beneficial effects of SREBP decoy oligodeoxynucleotide in an animal model of hyperlipidemia[J]. Int J Mol Sci, 2020, 21( 2): 552. DOI: 10.3390/ijms21020552.
|
[49] |
JIANG SY, YANG XL, YANG ZM, et al. Discovery of an insulin-induced gene binding compound that ameliorates nonalcoholic steatohepatitis by inhibiting sterol regulatory element-binding protein-mediated lipogenesis[J]. Hepatology, 2022, 76( 5): 1466- 1481. DOI: 10.1002/hep.32381.
|
[50] |
WANG YD, ZHANG JN, XU Z, et al. Identification and action mechanism of lipid regulating components from Rhei Radix et rhizoma[J]. J Ethnopharmacol, 2022, 292: 115179. DOI: 10.1016/j.jep.2022.115179.
|
[51] |
SU ZL, HANG PZ, HU J, et al. Aloe-emodin exerts cholesterol-lowering effects by inhibiting proprotein convertase subtilisin/kexin type 9 in hyperlipidemic rats[J]. Acta Pharmacol Sin, 2020, 41( 8): 1085- 1092. DOI: 10.1038/s41401-020-0392-8.
|
[52] |
MIYATA S, KODAKA M, KIKUCHI A, et al. Sulforaphane suppresses the activity of sterol regulatory element-binding proteins(SREBPs) by promoting SREBP precursor degradation[J]. Sci Rep, 2022, 12( 1): 8715. DOI: 10.1038/s41598-022-12347-6.
|
[53] |
CHO WK, LEE MM, MA JY. Antiviral effect of isoquercitrin against influenza A viral infection via modulating hemagglutinin and neuraminidase[J]. Int J Mol Sci, 2022, 23( 21): 13112. DOI: 10.3390/ijms232113112.
|
[54] |
KIM SH, YUN C, KWON D, et al. Effect of isoquercitrin on free fatty acid-induced lipid accumulation in HepG2 cells[J]. Molecules, 2023, 28( 3): 1476. DOI: 10.3390/molecules28031476.
|
[55] |
NAJAFI-SHOUSHTARI SH, KRISTO F, LI YX, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis[J]. Science, 2010, 328( 5985): 1566- 1569. DOI: 10.1126/science.1189123.
|
[56] |
HORIE T, NISHINO T, BABA O, et al. MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice[J]. Nat Commun, 2013, 4: 2883. DOI: 10.1038/ncomms3883.
|
[57] |
LI LF, ZHANG XY, REN HJ, et al. MiR-23a/b-3p promotes hepatic lipid accumulation by regulating Srebp-1c and Fas[J]. J Mol Endocrinol, 2021, 68( 1): 35- 49. DOI: 10.1530/JME-20-0324.
|
[58] |
SOBKY SA EL, ABOUD NK, ASSALY NM EL, et al. Regulation of lipid droplet(LD) formation in hepatocytes via regulation of SREBP1c by non-coding RNAs[J]. Front Med, 2022, 9: 903856. DOI: 10.3389/fmed.2022.903856.
|
[59] |
CHENG CW, DENG XL, XU KS. Increased expression of sterol regulatory element binding protein-2 alleviates autophagic dysfunction in NAFLD[J]. Int J Mol Med, 2018, 41( 4): 1877- 1886. DOI: 10.3892/ijmm.2018.3389.
|
[60] |
DENG XL, PAN XL, CHENG CW, et al. Regulation of SREBP-2 intracellular trafficking improves impaired autophagic flux and alleviates endoplasmic reticulum stress in NAFLD[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2017, 1862( 3): 337- 350. DOI: 10.1016/j.bbalip.2016.12.007.
|
[61] |
JU UI, JEONG DW, SEO J, et al. Neddylation of sterol regulatory element-binding protein 1c is a potential therapeutic target for nonalcoholic fatty liver treatment[J]. Cell Death Dis, 2020, 11( 4): 283. DOI: 10.1038/s41419-020-2472-6.
|
[62] |
SU SY, TIAN HM, JIA X, et al. Mechanistic insights into the effects of SREBP1c on hepatic stellate cell and liver fibrosis[J]. J Cell Mol Med, 2020, 24( 17): 10063- 10074. DOI: 10.1111/jcmm.15614.
|
[63] |
KAWAMURA S, MATSUSHITA Y, KUROSAKI S, et al. Inhibiting SCAP/SREBP exacerbates liver injury and carcinogenesis in murine nonalcoholic steatohepatitis[J]. J Clin Invest, 2022, 132( 11): e151895. DOI: 10.1172/JCI151895.
|
[1] | Ying LIN, Li CHEN, Fei PENG, Jianhui LIN, Chuanshang ZHUO. Changes in hemoglobin and related influencing factors in patients with liver failure undergoing artificial liver support therapy[J]. Journal of Clinical Hepatology, 2025, 41(1): 104-109. doi: 10.12449/JCH250116 |
[2] | Liver Failure and Artificial Liver Group, Chinese Society of Infectious Diseases, Chinese Medical Association, Severe Liver Disease and Artificial Liver Group, Chinese Society of Hepatology, Chinese Medical Association. Guideline for diagnosis and treatment of liver failure (2024 version)[J]. Journal of Clinical Hepatology, 2024, 40(12): 2371-2387. doi: 10.12449/JCH241206 |
[3] | Shoujuan LI, Li WANG, Ming ZHOU, Bei WU, Lei WANG, Meng DUAN, Hongfan LIAO, Ruiqing HU, Zhaoxia HU, Li ZHU, Juan HU. Efficacy and safety of artificial liver support therapy with a selective plasma separator in low-platelet count patients with acute-on-chronic liver failure[J]. Journal of Clinical Hepatology, 2024, 40(6): 1191-1195. doi: 10.12449/JCH240619 |
[4] | Shuang SUN, Jinquan LIU, Shuai FENG, Shuxian WANG, Xiangmei XU, Deshu DAI, Jianhong WANG, Jinzhen CAI, Chuanshen XU. Successful trans-blood liver transplantation after artificial liver support therapy in a patient with hepatic coma: A case report[J]. Journal of Clinical Hepatology, 2024, 40(4): 791-793. doi: 10.12449/JCH240423 |
[5] | Tao HAN, Qian ZHANG. Clinical practice and research advances in artificial liver support therapy[J]. Journal of Clinical Hepatology, 2024, 40(2): 225-228. doi: 10.12449/JCH240201 |
[6] | Jing ZHANG, Xinmin ZHOU. Artificial liver support therapy for patients with pre-liver failure[J]. Journal of Clinical Hepatology, 2024, 40(2): 229-232. doi: 10.12449/JCH240202 |
[7] | Li ZHOU, Yanrong YANG, Yu CHEN. Optimization of non-bioartificial liver technology and research advances in biological artificial liver[J]. Journal of Clinical Hepatology, 2024, 40(2): 239-245. doi: 10.12449/JCH240204 |
[8] | Yuhang CHEN, Zimeng JIANG, Zhijiao ZHANG, Mengyao ZHENG, Meilian WANG, Hua HUANG, Gongfang ZHAO. The influence of diagnostic criteria of different guidelines on short-term prognosis of artificial liver therapy for acute-on-chronic liver failure[J]. Journal of Clinical Hepatology, 2023, 39(11): 2629-2634. doi: 10.3969/j.issn.1001-5256.2023.11.017 |
[9] | Yiping LIU, Xinping LI, Lei CHEN, Jinju XIA, Kairong SONG, Ningyang JIA, Wanmin LIU. Accurate imaging diagnosis and recurrence prediction of hepatocellular carcinoma based on artificial intelligence[J]. Journal of Clinical Hepatology, 2022, 38(3): 521-527. doi: 10.3969/j.issn.1001-5256.2022.03.006 |
[10] | Severe Liver Disease and Artificial Liver Group, Chinese Society of Hepatology, Chinese Medical Association. Expert consensus on clinical application of artificial liver and blood purification (2022 edition)[J]. Journal of Clinical Hepatology, 2022, 38(4): 767-775. doi: 10.3969/j.issn.1001-5256.2022.04.007 |
[11] | Zhang Zhen, Sheng ChuQiao, Qi Ji, Li YuMei. Clinical analysis and prognostic judgment of artificial extracorporeal liver support therapy for pediatric acute liver failure [J]. Journal of Clinical Hepatology, 2015, 31(8): 1262-1265. doi: 10.3969/j.issn.1001-5256.2015.08.019 |
[12] | Fang He, Jin Xiong, Wang DongDong, Liu Hong, Ma LinJie, Li Li, Hu ZongQiang. Research progress in culture and in vivo and in vitro HBV infection of primary hepatocytes of tree shrews[J]. Journal of Clinical Hepatology, 2015, 31(10): 1740-1743. doi: 10.3969/j.issn.1001-5256.2015.09.10.049 |
[13] | He HongLiang, Li JianGuo, Gao ZhiLiang. Investigation of artificial liver support system combined with stem cell transplantation in treatment of liver failure[J]. Journal of Clinical Hepatology, 2013, 29(9): 670-673. doi: 10.3969/j.issn.1001-5256.2013.09.009 |
[14] | Liu XiaoHui, Guo HaiQing, Zhang Jing, Duan ZhongPing. Progress in technology and clinical application of non- bioartificial liver support system[J]. Journal of Clinical Hepatology, 2013, 29(9): 661-665. doi: 10.3969/j.issn.1001-5256.2013.09.007 |
[15] | Gao YanHang, Li YuLin, Li YanRu, Wu Shan, Quan ChengShi, Wang XinRui, Zhang LiHong. Isolation, culture, identification of human fetal liver stem cells in vitro[J]. Journal of Clinical Hepatology, 2007, 23(1): 3-5. |
[16] | He YongWen. The effect of TNF-α on express of MMPs and IL-8 of cultured hepatic stellate cell in human liver.[J]. Journal of Clinical Hepatology, 2006, 22(3): 171-173. |
[17] | Zhu ZhengYan, Du Zhi, Li Tao, Zhang JinJuan, Ma RuiLi. Long-term culture and induce differentiation of hepatic stem cells from human fetal liver in vitro[J]. Journal of Clinical Hepatology, 2004, 20(5): 267-268. |
组别 | 动物数(只) | 体质量(g) | 肝质量(g) | 肝指数(%) |
---|---|---|---|---|
空白组 | 6 | 24.15±0.45 | 1.03±0.05 | 4.26±0.15 |
Sham组 | 6 | 26.91±0.361) | 1.31±0.041) | 4.86±0.141) |
OVX组 | 6 | 30.92±0.892) | 1.63±0.042) | 5.28±0.142) |
OVX+L-Genistein组 | 6 | 28.91±0.353) | 1.46±0.043) | 5.05±0.133) |
OVX+H-Genistein组 | 6 | 27.36±0.523) | 1.35±0.033) | 4.92±0.103) |
F值 | 18.225 | 15.919 | 8.529 | |
P值 | <0.05 | <0.05 | <0.05 | |
注:与空白组比较,1)P<0.05;与Sham组比较,2)P<0.05;与OVX组比较,3)P<0.05。 |