1、两组连续型资料的分析思路
(1) 两组独立样本比较
资料符合正态分布,且两组方差齐性,直接采用t检验。
资料不符合正态分布,(1)可进行数据转换,如对数转换等,使之服从正态分布,然后对转换后的数据采用t检验;(2)采用非参数检验,如Wilcoxon检验。
资料符合正态分布单方差不齐,(1)采用Satterthwate 的t’检验;(2)采用非参数检验,如Wilcoxon检验。
(2) 两组配对样本的比较
两组差值服从正态分布,采用配对t检验。
两组差值不服从正态分布,采用wilcoxon的符号配对秩和检验。
以上是常用的资料分析的思路,但是实际中可能不止如此简单,比如实际中可能还需要看一下数据是否独立,如果不是独立的,还需要进一步考虑他们之间的相关性。 所谓独立性,其实理解也很简单。最常见的非独立数据就是同一观察对象不同时间点的数据。比如,一个人用药前后的观察值,由于是一个人的数据,很可能就会存在相关性,即非独立,比如,张三用药前的血压高,那用药后的血压可能也高,李四用药前的血压低,用药后可能也较低。而不同人的观察值,没有什么相关性,就是独立的,比如,张三的血压不会影响李四的血压。
2、多组连续资料的分析思路
(1).多组完全随机样本比较
资料符合正态分布,且各组方差齐性,直接采用完全随机的方差分析。如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey法,Scheffe法,SNK法等。
资料不符合正态分布,或各组方差不齐,则采用非参数检验的Kruscal-Wallis法。如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值。
(2) 多组随机区组样本比较
资料符合正态分布,且各组方差齐性,直接采用随机区组的方差分析。如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey法,Scheffe法,SNK法等。
资料不符合正态分布,或各组方差不齐,则采用非参数检验的Friedman检验法。如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值。