[1] |
Liver Failure and Artificial Liver Group, Chinese Society of Infectious Diseases, Chinese Medical Association of Severe Liver Disease and Artificial Liver Group, Chinese Society of Hepatology, Chinese Medical Association. Guideline for diagnosis and treatment of liver failure(2018)[J]. J Clin Hepatol, 2019, 35( 1): 38- 44. DOI: 10.3969/j.issn.1001-5256.2019.01.007.
中华医学会感染病学分会肝衰竭与人工肝学组, 中华医学会肝病学分会重型肝病与人工肝学组. 肝衰竭诊治指南(2018年版)[J]. 临床肝胆病杂志, 2019, 35( 1): 38- 44. DOI: 10.3969/j.issn.1001-5256.2019.01.007.
|
[2] |
CHEN MJ, LI X, TANG SH. Research progress in multi-dimensional evaluation of liver function in patients with liver failure[J]. Clin J Med Offic, 2023, 51( 9): 901- 903, 907. DOI: 10.16680/j.1671-3826.2023.09.05.
陈美娟, 李雪, 汤善宏. 多维度评估肝功能在肝衰竭患者预后中研究进展[J]. 临床军医杂志, 2023, 51( 9): 901- 903, 907. DOI: 10.16680/j.1671-3826.2023.09.05.
|
[3] |
CHOPYK DM, GRAKOUI A. Contribution of the intestinal microbiome and gut barrier to hepatic disorders[J]. Gastroenterology, 2020, 159( 3): 849- 863. DOI: 10.1053/j.gastro.2020.04.077.
|
[4] |
QIANG R, LIU XZ, XU JC. The immune pathogenesis of acute-on-chronic liver failure and the danger hypothesis[J]. Front Immunol, 2022, 13: 935160. DOI: 10.3389/fimmu.2022.935160.
|
[5] |
GAN Y, LI XY, HAN SZ, et al. The cGAS/STING pathway: A novel target for cancer therapy[J]. Front Immunol, 2022, 12: 795401. DOI: 10.3389/fimmu.2021.795401.
|
[6] |
ALLAIRE JM, CROWLEY SM, LAW HT, et al. The intestinal epithelium: Central coordinator of mucosal immunity[J]. Trends Immunol, 2018, 39( 9): 677- 696. DOI: 10.1016/j.it.2018.04.002.
|
[7] |
DI TOMMASO N, GASBARRINI A, PONZIANI FR. Intestinal barrier in human health and disease[J]. Int J Environ Res Public Health, 2021, 18( 23): 12836. DOI: 10.3390/ijerph182312836.
|
[8] |
PAONE P, CANI PD. Mucus barrier, mucins and gut microbiota: The expected slimy partners?[J]. Gut, 2020, 69( 12): 2232- 2243. DOI: 10.1136/gutjnl-2020-322260.
|
[9] |
HENDRIKX T, SCHNABL B. Antimicrobial proteins: Intestinal guards to protect against liver disease[J]. J Gastroenterol, 2019, 54( 3): 209- 217. DOI: 10.1007/s00535-018-1521-8.
|
[10] |
LITVAK Y, MON KKZ, NGUYEN H, et al. Commensal enterobacteriaceae protect against Salmonella colonization through oxygen competition[J]. Cell Host Microbe, 2019, 25( 1): 128- 139. e 5. DOI: 10.1016/j.chom.2018.12.003.
|
[11] |
HIIPPALA K, JOUHTEN H, RONKAINEN A, et al. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation[J]. Nutrients, 2018, 10( 8): 988. DOI: 10.3390/nu10080988.
|
[12] |
VANCAMELBEKE M, VERMEIRE S. The intestinal barrier: A fundamental role in health and disease[J]. Expert Rev Gastroenterol Hepatol, 2017, 11( 9): 821- 834. DOI: 10.1080/17474124.2017.1343143.
|
[13] |
WEI Q, HUANG H. Insights into the role of cell-cell junctions in physiology and disease[J]. Int Rev Cell Mol Biol, 2013, 306: 187- 221. DOI: 10.1016/B978-0-12-407694-5.00005-5.
|
[14] |
MOWAT AM, AGACE WW. Regional specialization within the intestinal immune system[J]. Nat Rev Immunol, 2014, 14( 10): 667- 685. DOI: 10.1038/nri3738.
|
[15] |
DELFINI M, STAKENBORG N, VIOLA MF, et al. Macrophages in the gut: Masters in multitasking[J]. Immunity, 2022, 55( 9): 1530- 1548. DOI: 10.1016/j.immuni.2022.08.005.
|
[16] |
MARTÍNEZ-LÓPEZ M, IBORRA S, CONDE-GARROSA R, et al. Microbiota sensing by mincle-syk axis in dendritic cells regulates interleukin-17 and-22 production and promotes intestinal barrier integrity[J]. Immunity, 2019, 50( 2): 446- 461. e 9. DOI: 10.1016/j.immuni.2018.12.020.
|
[17] |
TEZUKA H, OHTEKI T. Regulation of IgA production by intestinal dendritic cells and related cells[J]. Front Immunol, 2019, 10: 1891. DOI: 10.3389/fimmu.2019.01891.
|
[18] |
SPENCER J, BEMARK M. Human intestinal B cells in inflammatory diseases[J]. Nat Rev Gastroenterol Hepatol, 2023, 20( 4): 254- 265. DOI: 10.1038/s41575-023-00755-6.
|
[19] |
MANN ER, LAM YK, UHLIG HH. Short-chain fatty acids: Linking diet, the microbiome and immunity[J]. Nat Rev Immunol, 2024, 24( 8): 577- 595. DOI: 10.1038/s41577-024-01014-8.
|
[20] |
LE N, MAZAHERY C, NGUYEN K, et al. Regulation of intestinal epithelial barrier and immune function by activated T cells[J]. Cell Mol Gastroenterol Hepatol, 2021, 11( 1): 55- 76. DOI: 10.1016/j.jcmgh.2020.07.004.
|
[21] |
YOO JS, OH SF. Unconventional immune cells in the gut mucosal barrier: Regulation by symbiotic microbiota[J]. Exp Mol Med, 2023, 55( 9): 1905- 1912. DOI: 10.1038/s12276-023-01088-9.
|
[22] |
GIL-CRUZ C, PEREZ-SHIBAYAMA C, ONDER L, et al. Fibroblastic reticular cells regulate intestinal inflammation via IL-15-mediated control of group 1 ILCs[J]. Nat Immunol, 2016, 17( 12): 1388- 1396. DOI: 10.1038/ni.3566.
|
[23] |
HOU QH, HUANG JX, AYANSOLA H, et al. Intestinal stem cells and immune cell relationships: Potential therapeutic targets for inflammatory bowel diseases[J]. Front Immunol, 2021, 11: 623691. DOI: 10.3389/fimmu.2020.623691.
|
[24] |
SONNENBERG GF, MONTICELLI LA, ALENGHAT T, et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria[J]. Science, 2012, 336( 6086): 1321- 1325. DOI: 10.1126/science.1222551.
|
[25] |
LE BOURHIS L, MARTIN E, PÉGUILLET I, et al. Antimicrobial activity of mucosal-associated invariant T cells[J]. Nat Immunol, 2010, 11( 8): 701- 708. DOI: 10.1038/ni.1890.
|
[26] |
OLIVARES-VILLAGÓMEZ D, VAN KAER L. Intestinal intraepithelial lymphocytes: Sentinels of the mucosal barrier[J]. Trends Immunol, 2018, 39( 4): 264- 275. DOI: 10.1016/j.it.2017.11.003.
|
[27] |
KAYAMA H, OKUMURA R, TAKEDA K. Interaction between the microbiota, epithelia, and immune cells in the intestine[J]. Annu Rev Immunol, 2020, 38: 23- 48. DOI: 10.1146/annurev-immunol-070119-115104.
|
[28] |
CHEN BR, NI X, SUN R, et al. Commensal bacteria-dependent CD8αβ+ T cells in the intestinal epithelium produce antimicrobial peptides[J]. Front Immunol, 2018, 9: 1065. DOI: 10.3389/fimmu.2018.01065.
|
[29] |
HOYTEMA VAN KONIJNENBURG DP, REIS BS, PEDICORD VA, et al. Intestinal epithelial and intraepithelial T cell crosstalk mediates a dynamic response to infection[J]. Cell, 2017, 171( 4): 783- 794. e 13. DOI: 10.1016/j.cell.2017.08.046.
|
[30] |
WELLS JM, BRUMMER RJ, DERRIEN M, et al. Homeostasis of the gut barrier and potential biomarkers[J]. Am J Physiol Gastrointest Liver Physiol, 2017, 312( 3): G171- G193. DOI: 10.1152/ajpgi.00048.2015.
|
[31] |
ZHANG B, DILIHUMAER ZYE, ZHANG SY, et al. Progress on pathogenesis and medical treatment of hepatitis B virus-related chronic and acute liver failure[J/CD]. Chin J Liver Dis(Electronic Version), 2023, 15( 1): 28- 33. DOI: 10.3969/j.issn.1674-7380.2023.01.005.
张斌, 迪丽胡玛尔·扎依尔, 张诗雨, 等. 乙型肝炎相关慢加急性肝衰竭发病机制及治疗进展[J/CD]. 中国肝脏病杂志(电子版), 2023, 15( 1): 28- 33. DOI: 10.3969/j.issn.1674-7380.2023.01.005.
|
[32] |
BIGGINS SW, ANGELI P, GARCIA-TSAO G, et al. Diagnosis, evaluation, and management of ascites, spontaneous bacterial peritonitis and hepatorenal syndrome: 2021 practice guidance by the American association for the study of liver diseases[J]. Hepatology, 2021, 74( 2): 1014- 1048. DOI: 10.1002/hep.31884.
|
[33] |
KIM SE, PARK JW, KIM HS, et al. The role of gut dysbiosis in acute-on-chronic liver failure[J]. Int J Mol Sci, 2021, 22( 21): 11680. DOI: 10.3390/ijms222111680.
|
[34] |
BAJAJ JS, VARGAS HE, REDDY KR, et al. Association between intestinal microbiota collected at hospital admission and outcomes of patients with cirrhosis[J]. Clin Gastroenterol Hepatol, 2019, 17( 4): 756- 765. e 3. DOI: 10.1016/j.cgh.2018.07.022.
|
[35] |
FERNÁNDEZ J, ACEVEDO J, WIEST R, et al. Bacterial and fungal infections in acute-on-chronic liver failure: Prevalence, characteristics and impact on prognosis[J]. Gut, 2018, 67( 10): 1870- 1880. DOI: 10.1136/gutjnl-2017-314240.
|
[36] |
PHILIPS CA, AUGUSTINE P. Gut barrier and microbiota in cirrhosis[J]. J Clin Exp Hepatol, 2022, 12( 2): 625- 638. DOI: 10.1016/j.jceh.2021.08.027.
|
[37] |
FENG X, LIU DY, LI ZY, et al. Bioactive modulators targeting STING adaptor in cGAS-STING pathway[J]. Drug Discov Today, 2020, 25( 1): 230- 237. DOI: 10.1016/j.drudis.2019.11.007.
|
[38] |
BAI JL, LIU F. The cGAS-cGAMP-STING pathway: A molecular link between immunity and metabolism[J]. Diabetes, 2019, 68( 6): 1099- 1108. DOI: 10.2337/dbi18-0052.
|
[39] |
CHEN RH, DU JM, ZHU H, et al. The role of cGAS-STING signalling in liver diseases[J]. JHEP Rep, 2021, 3( 5): 100324. DOI: 10.1016/j.jhepr.2021.100324.
|
[40] |
LUTHER J, KHAN S, GALA MK, et al. Hepatic gap junctions amplify alcohol liver injury by propagating cGAS-mediated IRF3 activation[J]. Proc Natl Acad Sci USA, 2020, 117( 21): 11667- 11673. DOI: 10.1073/pnas.1911870117.
|
[41] |
ZHANG H. The role of autophagy and macrophage polarization mediated by STING pathway activation in the pathogenesis of HBV-related acute liver failure and the establishment of clinical prognosis model[D]. Hefei: Anhui Medical University, 2023.
张浩. STING通路活化介导自噬及巨噬细胞极化在HBV相关慢加急性肝衰竭发病机制的作用及临床预后模型的建立[D]. 合肥: 安徽医科大学, 2023.
|
[42] |
YU T, CHENG HR, LI XL, et al. Design and synthesis of hederagenin derivatives modulating STING/NF-κB signaling for the relief of acute liver injury in septic mice[J]. Eur J Med Chem, 2023, 245( Pt 1): 114911. DOI: 10.1016/j.ejmech.2022.114911.
|
[43] |
CANESSO MCC, LEMOS L, NEVES TC, et al. The cytosolic sensor STING is required for intestinal homeostasis and control of inflammation[J]. Mucosal Immunol, 2018, 11( 3): 820- 834. DOI: 10.1038/mi.2017.88.
|
[44] |
LOUIE A, BHANDULA V, PORTNOY DA. Secretion of c-di-AMP by Listeria monocytogenes leads to a STING-dependent antibacterial response during enterocolitis[J]. Infect Immun, 2020, 88( 12): e00407-20. DOI: 10.1128/IAI.00407-20.
|
[45] |
ZHANG Q, CHEN QY, YAN CS, et al. The absence of STING ameliorates non-alcoholic fatty liver disease and reforms gut bacterial community[J]. Front Immunol, 2022, 13: 931176. DOI: 10.3389/fimmu.2022.931176.
|
[46] |
ZHANG XF, WU J, LIU QJ, et al. mtDNA-STING pathway promotes necroptosis-dependent enterocyte injury in intestinal ischemia reperfusion[J]. Cell Death Dis, 2020, 11( 12): 1050. DOI: 10.1038/s41419-020-03239-6.
|
[47] |
AL-SADI R, GUO SH, YE DM, et al. TNF-α modulation of intestinal tight junction permeability is mediated by NIK/IKK-α axis activation of the canonical NF-κB pathway[J]. Am J Pathol, 2016, 186( 5): 1151- 1165. DOI: 10.1016/j.ajpath.2015.12.016.
|
[48] |
HU QY, REN HJ, LI GW, et al. STING-mediated intestinal barrier dysfunction contributes to lethal sepsis[J]. EBioMedicine, 2019, 41: 497- 508. DOI: 10.1016/j.ebiom.2019.02.055.
|
[49] |
MARTIN GR, BLOMQUIST CM, HENARE KL, et al. Stimulator of interferon genes(STING) activation exacerbates experimental colitis in mice[J]. Sci Rep, 2019, 9( 1): 14281. DOI: 10.1038/s41598-019-50656-5.
|
[50] |
SCHAUPP L, MUTH S, ROGELL L, et al. Microbiota-induced type I interferons instruct a poised basal state of dendritic cells[J]. Cell, 2020, 181( 5): 1080- 1096. e 19. DOI: 10.1016/j.cell.2020.04.022.
|
[51] |
GUTIERREZ-MERINO J, ISLA B, COMBES T, et al. Beneficial bacteria activate type-I interferon production via the intracellular cytosolic sensors STING and MAVS[J]. Gut Microbes, 2020, 11( 4): 771- 788. DOI: 10.1080/19490976.2019.1707015.
|
[1] | Yannan LI, Changzheng LI. Gut microbiota in hepatitis B cirrhosis[J]. Journal of Clinical Hepatology, 2025, 41(3): 552-555. doi: 10.12449/JCH250324 |
[2] | Yihui ZHENG, Jiahui WANG, Tiejian ZHAO, Xuelin DUAN, Lei WANG, Yang ZHENG, Shiquan YANG. Role of alkaloid compounds in regulating chronic liver diseases[J]. Journal of Clinical Hepatology, 2025, 41(2): 375-382. doi: 10.12449/JCH250227 |
[3] | Xiaoming WU, Qiang HE, Linyi HOU, Yan HU, Xiaofang ZHEN, Jing HAO, Yan SHENG. Effect of Yudantong decoction on intestinal flora and intestinal barrier function in mice with cholestasis induced by α-naphthyl isothiocyanate[J]. Journal of Clinical Hepatology, 2023, 39(4): 864-875. doi: 10.3969/j.issn.1001-5256.2023.04.018 |
[4] | Guirong CHEN, Minggang WANG, Huaming LIN, Huiping YAN, Xiufeng WANG. Changes and pathogenic mechanism of intestinal flora in acute-on-chronic liver failure[J]. Journal of Clinical Hepatology, 2023, 39(8): 1992-1998. doi: 10.3969/j.issn.1001-5256.2023.08.034 |
[5] | Quan ZHOU, Chunlin CAI, Jinqiang LI. Gut-liver axis: Intestinal microbial homeostasis and hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2023, 39(11): 2710-2717. doi: 10.3969/j.issn.1001-5256.2023.11.029 |
[6] | Fuchun WANG, Ziyi LI, Wanjie ZHANG, Xiaorong MAO, Junfeng LI. The significance of gut microbiota in acute-on-chronic liver failure[J]. Journal of Clinical Hepatology, 2022, 38(7): 1667-1670. doi: 10.3969/j.issn.1001-5256.2022.07.040 |
[7] | Hui DENG, Bin ZHANG, Bin ZHU, Zhayier DILIHUMAER, Weixian WANG, Chunxia GUO, Dongliang YANG, Xin ZHENG, Junzhong WANG, Baoju WANG. Research advances in the role of gut microbiota in chronic hepatitis B, chronic hepatitis C, and related liver diseases[J]. Journal of Clinical Hepatology, 2022, 38(5): 1143-1147. doi: 10.3969/j.issn.1001-5256.2022.05.035 |
[8] | Jianli ZHOU, Zhaoxia WANG, Shaoming ZHOU, Qiao ZHANG, Xia QIAN. Composition and functional change of intestinal microbiota in infantile cholestasis[J]. Journal of Clinical Hepatology, 2021, 37(1): 126-130. doi: 10.3969/j.issn.1001-5256.2021.01.025 |
[9] | Menghao LI, Kai LI, Shihao TANG, Zhengyu WANG, Wengang GUO, Zhanxin YIN, Guohong HAN. Changes in gut microbiota after transjugular intrahepatic portosystemic shunt in cirrhotic patients with mild hepatic encephalopathy in different prognosis groups[J]. Journal of Clinical Hepatology, 2021, 37(2): 326-330. doi: 10.3969/j.issn.1001-5256.2021.02.016 |
[10] | Yanyan CHEN, Yanmei LAN, Minggang WANG, Dewen. MAO. Mechanism of action of bile acid-farnesoid X receptor-intestinal microecological axis in the development of liver failure and liver regeneration[J]. Journal of Clinical Hepatology, 2021, 37(2): 480-484. doi: 10.3969/j.issn.1001-5256.2021.02.049 |
[11] | Lingyan XIAO, Awen XING, Shanzhong TAN. Research advances in the association between liver failure and intestinal barrier injury[J]. Journal of Clinical Hepatology, 2021, 37(11): 2710-2714. doi: 10.3969/j.issn.1001-5256.2021.11.049 |
[12] | Li HongShan, Hu YiYang. Gut microecology: An important target of traditional Chinese medicine in the treatment of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2020, 36(1): 14-18. doi: 10.3969/j.issn.1001-5256.2020.01.002 |
[13] | Huang YunYi, Liu Yao, Zhang Qun, Shi Ke, Wang XianBo. Association of intestinal microecology with hepatic encephalopathy[J]. Journal of Clinical Hepatology, 2020, 36(4): 912-914. doi: 10.3969/j.issn.1001-5256.2020.04.045 |
[14] | SUN MengYuan, XIANG XiaoXing. Role of gut microbiota and bile acid pathway in nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2020, 36(12): 2831-2834. doi: 10.3969/j.issn.1001-5256.2020.12.040 |
[15] | Huang Qian, Zhang HaiBo, Li JingTao, Wei HaiLiang, Yan ShuGuang, Hui Yi, Chang ZhanJie. Research advances in the mechanism of action of intestinal microecology in intrahepatic cholestasis[J]. Journal of Clinical Hepatology, 2019, 35(10): 2355-2359. doi: 10.3969/j.issn.1001-5256.2019.10.050 |
[16] | Zheng Wei, Zhang YongHong, Zhao Yan. Role of intestinal microflora in the pathogenesis of hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2019, 35(7): 1613-1615. doi: 10.3969/j.issn.1001-5256.2019.07.041 |
[17] | Wang WeiZhen, Meng MingHui, Kong Li, Zhang QingShan, Zhao SuXian, Nan YueMin. Role of Jak /Stat pathway in CCl4- induced rat liver fibrosis model and molecular action mechanism of Fuzheng Huayu recipe in treatment of liver fibrosis[J]. Journal of Clinical Hepatology, 2014, 30(4): 344-348. doi: 10.3969/j.issn.1001-5256.2014.04.014 |
[18] | Pan Peng, Liu ShaoNeng. PI3K/Akt signaling pathway and hepatic fibrosis[J]. Journal of Clinical Hepatology, 2013, 29(5): 389-392+396. |
[19] | Zhou XinMin, Dong XuYang. Therapeutic strategies of liver failure for clinical cases[J]. Journal of Clinical Hepatology, 2012, 28(2): 93-98. |
[20] | Zhang AiMin, Xin ShaoJie. Virus infection and liver failure[J]. Journal of Clinical Hepatology, 2012, 28(10): 729-731. |