中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 41 Issue 3
Mar.  2025
Turn off MathJax
Article Contents

The development and application of genetically engineered human serum albumin

DOI: 10.12449/JCH250304
Research funding:

National Natural Science Foundation of China (U24A20654);

National Natural Science Foundation of China (82170602);

The Project for Middle-aged and Young Excellent Technological Innovation Talents of Jilin Province (20220508079RC);

Natural Science Foundation for Self-Exploration Research of Jilin Province (YDZJ202401427ZYTS);

Jilin Provincial Key Laboratory of Metabolic Liver Diseases (YDZJ202502CXJD002);

National Key Research and Development Program of China (2024YFE0213800)

More Information
  • Corresponding author: NIU Junqi, junqiniu@aliyun.com (ORCID: 0000-0002-1696-6008)
  • Received Date: 2025-01-13
  • Accepted Date: 2025-02-01
  • Published Date: 2025-03-25
  • Human serum albumin (HSA) is the most abundant protein in plasma and has many biological functions and clinical applications. An adequate and stable supply of functional HSA molecules that are easy to store and have a long half-life is still an unmet clinical need. Therefore, it is extremely necessary to develop alternative methods for large-scale production of HSA. Genetic engineering techniques can clone the HSA gene into microorganism, animal, and plant hosts for efficient expression, which provides new possibilities for the large-scale production of HSA. This article reviews the advances in recombinant HSA (rHSA) in different expression systems and the production of rHSA by xenogeneic animals such as pigs and cattle, in order to draw attention to the application potential of genetic engineering techniques in HSA production and the importance of rHSA in the biomedical field in future.

     

  • loading
  • [1]
    ASHRAF S, QAISER H, TARIQ S, et al. Unraveling the versatility of human serum albumin-A comprehensive review of its biological significance and therapeutic potential[J]. Curr Res Struct Biol, 2023, 6: 100114. DOI: 10.1016/j.crstbi.2023.100114.
    [2]
    GUZZI R, BARTUCCI R. Thermal effects and drugs competition on the palmitate binding capacity of human serum albumin[J]. Biochem Biophys Res Commun, 2024, 722: 150168. DOI: 10.1016/j.bbrc.2024.150168.
    [3]
    ERSTAD BL. Introduction to the concept of effective albumin concentration[J]. Am J Health Syst Pharm, 2024, 82( 1): 5- 11. DOI: 10.1093/ajhp/zxae232.
    [4]
    JAGDISH RK, MARAS JS, SARIN SK. Albumin in advanced liver diseases: The good and bad of a drug![J]. Hepatology, 2021, 74( 5): 2848- 2862. DOI: 10.1002/hep.31836.
    [5]
    SHARMA A, CHAUDHURI TK. Revisiting Escherichia coli as microbial factory for enhanced production of human serum albumin[J]. Microb Cell Fact, 2017, 16( 1): 173. DOI: 10.1186/s12934-017-0784-8.
    [6]
    SHARMA A, CHAUDHURI TK. Physicochemical characterization of E. coli-derived human serum albumin and its comparison with the human plasma counterpart reveals it as a promising biosimilar[J]. J Biotechnol, 2018, 274: 1- 8. DOI: 10.1016/j.jbiotec.2018.03.004.
    [7]
    NGUYEN MT, HEO Y, DO BH, et al. Bacterial overexpression and purification of soluble recombinant human serum albumin using maltose-binding protein and protein disulphide isomerase[J]. Protein Expr Purif, 2020, 167: 105530. DOI: 10.1016/j.pep.2019.105530.
    [8]
    OHYA T, OHYAMA M, KOBAYASHI K. Optimization of human serum albumin production in methylotrophic yeast Pichia pastoris by repeated fed-batch fermentation[J]. Biotechnol Bioeng, 2005, 90( 7): 876- 887. DOI: 10.1002/bit.20507.
    [9]
    MAITY N, MISHRA S. Statistically designed medium reveals interactions between metabolism and genetic information processing for production of stable human serum albumin in Pichia pastoris[J]. Biomolecules, 2019, 9( 10): 568. DOI: 10.3390/biom9100568.
    [10]
    DALVIE NC, LORGEREE TR, YANG YC, et al. CRISPR-Cas9 knockout screen informs efficient reduction of the Komagataella phaffii secretome[J]. Microb Cell Fact, 2024, 23( 1): 217. DOI: 10.1186/s12934-024-02466-2.
    [11]
    LIANG ZC, DENG ML, ZHANG Z, et al. One-step construction of a food-grade expression system based on the URA3 gene in Kluyveromyces lactis[J]. Plasmid, 2021, 116: 102577. DOI: 10.1016/j.plasmid.2021.102577.
    [12]
    LIN YP, FENG YZ, ZHENG L, et al. Improved protein production in yeast using cell engineering with genes related to a key factor in the unfolded protein response[J]. Metab Eng, 2023, 77: 152- 161. DOI: 10.1016/j.ymben.2023.04.004.
    [13]
    SUN QY, DING LW, LOMONOSSOFF GP, et al. Improved expression and purification of recombinant human serum albumin from transgenic tobacco suspension culture[J]. J Biotechnol, 2011, 155( 2): 164- 172. DOI: 10.1016/j.jbiotec.2011.06.033.
    [14]
    MOGHADDASSI S, EYESTONE W, BISHOP CE. TALEN-mediated modification of the bovine genome for large-scale production of human serum albumin[J]. PLoS One, 2014, 9( 2): e89631. DOI: 10.1371/journal.pone.0089631.
    [15]
    PENG J, WANG Y, JIANG JY, et al. Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes[J]. Sci Rep, 2015, 5: 16705. DOI: 10.1038/srep16705.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2527) PDF downloads(112) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return