| [1] |
ASHRAF S, QAISER H, TARIQ S, et al. Unraveling the versatility of human serum albumin-A comprehensive review of its biological significance and therapeutic potential[J]. Curr Res Struct Biol, 2023, 6: 100114. DOI: 10.1016/j.crstbi.2023.100114.
|
| [2] |
GUZZI R, BARTUCCI R. Thermal effects and drugs competition on the palmitate binding capacity of human serum albumin[J]. Biochem Biophys Res Commun, 2024, 722: 150168. DOI: 10.1016/j.bbrc.2024.150168.
|
| [3] |
ERSTAD BL. Introduction to the concept of effective albumin concentration[J]. Am J Health Syst Pharm, 2024, 82( 1): 5- 11. DOI: 10.1093/ajhp/zxae232.
|
| [4] |
JAGDISH RK, MARAS JS, SARIN SK. Albumin in advanced liver diseases: The good and bad of a drug![J]. Hepatology, 2021, 74( 5): 2848- 2862. DOI: 10.1002/hep.31836.
|
| [5] |
SHARMA A, CHAUDHURI TK. Revisiting Escherichia coli as microbial factory for enhanced production of human serum albumin[J]. Microb Cell Fact, 2017, 16( 1): 173. DOI: 10.1186/s12934-017-0784-8.
|
| [6] |
SHARMA A, CHAUDHURI TK. Physicochemical characterization of E. coli-derived human serum albumin and its comparison with the human plasma counterpart reveals it as a promising biosimilar[J]. J Biotechnol, 2018, 274: 1- 8. DOI: 10.1016/j.jbiotec.2018.03.004.
|
| [7] |
NGUYEN MT, HEO Y, DO BH, et al. Bacterial overexpression and purification of soluble recombinant human serum albumin using maltose-binding protein and protein disulphide isomerase[J]. Protein Expr Purif, 2020, 167: 105530. DOI: 10.1016/j.pep.2019.105530.
|
| [8] |
OHYA T, OHYAMA M, KOBAYASHI K. Optimization of human serum albumin production in methylotrophic yeast Pichia pastoris by repeated fed-batch fermentation[J]. Biotechnol Bioeng, 2005, 90( 7): 876- 887. DOI: 10.1002/bit.20507.
|
| [9] |
MAITY N, MISHRA S. Statistically designed medium reveals interactions between metabolism and genetic information processing for production of stable human serum albumin in Pichia pastoris[J]. Biomolecules, 2019, 9( 10): 568. DOI: 10.3390/biom9100568.
|
| [10] |
DALVIE NC, LORGEREE TR, YANG YC, et al. CRISPR-Cas9 knockout screen informs efficient reduction of the Komagataella phaffii secretome[J]. Microb Cell Fact, 2024, 23( 1): 217. DOI: 10.1186/s12934-024-02466-2.
|
| [11] |
LIANG ZC, DENG ML, ZHANG Z, et al. One-step construction of a food-grade expression system based on the URA3 gene in Kluyveromyces lactis[J]. Plasmid, 2021, 116: 102577. DOI: 10.1016/j.plasmid.2021.102577.
|
| [12] |
LIN YP, FENG YZ, ZHENG L, et al. Improved protein production in yeast using cell engineering with genes related to a key factor in the unfolded protein response[J]. Metab Eng, 2023, 77: 152- 161. DOI: 10.1016/j.ymben.2023.04.004.
|
| [13] |
SUN QY, DING LW, LOMONOSSOFF GP, et al. Improved expression and purification of recombinant human serum albumin from transgenic tobacco suspension culture[J]. J Biotechnol, 2011, 155( 2): 164- 172. DOI: 10.1016/j.jbiotec.2011.06.033.
|
| [14] |
MOGHADDASSI S, EYESTONE W, BISHOP CE. TALEN-mediated modification of the bovine genome for large-scale production of human serum albumin[J]. PLoS One, 2014, 9( 2): e89631. DOI: 10.1371/journal.pone.0089631.
|
| [15] |
PENG J, WANG Y, JIANG JY, et al. Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes[J]. Sci Rep, 2015, 5: 16705. DOI: 10.1038/srep16705.
|