[1] |
ASHRAF S, QAISER H, TARIQ S, et al. Unraveling the versatility of human serum albumin-A comprehensive review of its biological significance and therapeutic potential[J]. Curr Res Struct Biol, 2023, 6: 100114. DOI: 10.1016/j.crstbi.2023.100114.
|
[2] |
GUZZI R, BARTUCCI R. Thermal effects and drugs competition on the palmitate binding capacity of human serum albumin[J]. Biochem Biophys Res Commun, 2024, 722: 150168. DOI: 10.1016/j.bbrc.2024.150168.
|
[3] |
ERSTAD BL. Introduction to the concept of effective albumin concentration[J]. Am J Health Syst Pharm, 2024, 82( 1): 5- 11. DOI: 10.1093/ajhp/zxae232.
|
[4] |
JAGDISH RK, MARAS JS, SARIN SK. Albumin in advanced liver diseases: The good and bad of a drug![J]. Hepatology, 2021, 74( 5): 2848- 2862. DOI: 10.1002/hep.31836.
|
[5] |
SHARMA A, CHAUDHURI TK. Revisiting Escherichia coli as microbial factory for enhanced production of human serum albumin[J]. Microb Cell Fact, 2017, 16( 1): 173. DOI: 10.1186/s12934-017-0784-8.
|
[6] |
SHARMA A, CHAUDHURI TK. Physicochemical characterization of E. coli-derived human serum albumin and its comparison with the human plasma counterpart reveals it as a promising biosimilar[J]. J Biotechnol, 2018, 274: 1- 8. DOI: 10.1016/j.jbiotec.2018.03.004.
|
[7] |
NGUYEN MT, HEO Y, DO BH, et al. Bacterial overexpression and purification of soluble recombinant human serum albumin using maltose-binding protein and protein disulphide isomerase[J]. Protein Expr Purif, 2020, 167: 105530. DOI: 10.1016/j.pep.2019.105530.
|
[8] |
OHYA T, OHYAMA M, KOBAYASHI K. Optimization of human serum albumin production in methylotrophic yeast Pichia pastoris by repeated fed-batch fermentation[J]. Biotechnol Bioeng, 2005, 90( 7): 876- 887. DOI: 10.1002/bit.20507.
|
[9] |
MAITY N, MISHRA S. Statistically designed medium reveals interactions between metabolism and genetic information processing for production of stable human serum albumin in Pichia pastoris[J]. Biomolecules, 2019, 9( 10): 568. DOI: 10.3390/biom9100568.
|
[10] |
DALVIE NC, LORGEREE TR, YANG YC, et al. CRISPR-Cas9 knockout screen informs efficient reduction of the Komagataella phaffii secretome[J]. Microb Cell Fact, 2024, 23( 1): 217. DOI: 10.1186/s12934-024-02466-2.
|
[11] |
LIANG ZC, DENG ML, ZHANG Z, et al. One-step construction of a food-grade expression system based on the URA3 gene in Kluyveromyces lactis[J]. Plasmid, 2021, 116: 102577. DOI: 10.1016/j.plasmid.2021.102577.
|
[12] |
LIN YP, FENG YZ, ZHENG L, et al. Improved protein production in yeast using cell engineering with genes related to a key factor in the unfolded protein response[J]. Metab Eng, 2023, 77: 152- 161. DOI: 10.1016/j.ymben.2023.04.004.
|
[13] |
SUN QY, DING LW, LOMONOSSOFF GP, et al. Improved expression and purification of recombinant human serum albumin from transgenic tobacco suspension culture[J]. J Biotechnol, 2011, 155( 2): 164- 172. DOI: 10.1016/j.jbiotec.2011.06.033.
|
[14] |
MOGHADDASSI S, EYESTONE W, BISHOP CE. TALEN-mediated modification of the bovine genome for large-scale production of human serum albumin[J]. PLoS One, 2014, 9( 2): e89631. DOI: 10.1371/journal.pone.0089631.
|
[15] |
PENG J, WANG Y, JIANG JY, et al. Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes[J]. Sci Rep, 2015, 5: 16705. DOI: 10.1038/srep16705.
|
[1] | Yan YANG, Feilin GE, Qian HUANG, Xinyue ZHANG, Rui ZENG, Xiaohe XIAO, Zhaofang BAI, Qin SUN. Mechanism of action of nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome in liver diseases[J]. Journal of Clinical Hepatology, 2022, 38(4): 942-946. doi: 10.3969/j.issn.1001-5256.2022.04.041 |
[2] | Laying ZHANG, Mingkai CHEN. Research advances in the mechanism of action of TRPV4 ion channel protein in liver diseases[J]. Journal of Clinical Hepatology, 2022, 38(1): 224-227. doi: 10.3969/j.issn.1001-5256.2022.01.040 |
[3] | Zhengguang LIAO, Shihui WEI, Danyu DU, Li SUN, Shengtao YUAN. Role of lipocalin-2 in the development and progression of liver diseases[J]. Journal of Clinical Hepatology, 2022, 38(9): 2177-2181. doi: 10.3969/j.issn.1001-5256.2022.09.044 |
[4] | Rui CHEN, Zhixin WANG, Haining FAN, Haijiu WANG. Research advances in the role of lymphocyte activation gene-3 in liver-related diseases[J]. Journal of Clinical Hepatology, 2021, 37(4): 977-981. doi: 10.3969/j.issn.1001-5256.2021.04.056 |
[6] | Wang ShaSha, Hua Fang, Jiao YongGeng, Qin ErYun, Zhi YiXiao, Pang MengYuan, Xu HongQin, Chi XiuMei, Niu JunQi, Hua Rui. Serum level of ceruloplasmin in patients with different liver diseases in Jilin,China[J]. Journal of Clinical Hepatology, 2020, 36(9): 2025-2029. doi: 10.3969/j.issn.1001-5256.2020.09.023 |
[7] | Yang ShangQing, Yang DongLiang, Liu Jia. Role of matrix metalloproteinases-2 and matrix metalloproteinases-9 in the development and progression of chronic liver diseases[J]. Journal of Clinical Hepatology, 2020, 36(10): 2364-2369. doi: 10.3969/j.issn.1001-5256.2020.10.045 |
[8] | Wang ShanShan, Zhang QingShan, Zhao SuXian, Kong LingBo, Ji Lei, Kong Li. The immunoregulatory effect of tumor necrosis factor-alpha-induced protein 8-like 2 in different liver diseases[J]. Journal of Clinical Hepatology, 2020, 36(2): 460-463. doi: 10.3969/j.issn.1001-5256.2020.02.050 |
[10] | Ye QianLing, Mao DeWen, Wang MingGang, Wang Na. Role of NLRP3 inflammasome in the development and progression of liver diseases[J]. Journal of Clinical Hepatology, 2019, 35(10): 2346-2350. doi: 10.3969/j.issn.1001-5256.2019.10.048 |
[11] | Zhang Xue, Li Man, Zhang Xin, Sun XueHua, Zhu XiaoJun, Gao YaTing, Gao YueQiu. Stimulator of interferon genes inhibits the development and progression of chronic liver diseases[J]. Journal of Clinical Hepatology, 2019, 35(5): 1148-1152. doi: 10.3969/j.issn.1001-5256.2019.05.049 |
[13] | Wei FengXian, Liu Zhao, Geng Jie, Su GuoHong, Chen Mo, Wang ManCai, Cao WeiJia, Zhang YouCheng. Research advances in association between Golgi protein 73 and liver diseases[J]. Journal of Clinical Hepatology, 2017, 33(8): 1595-1598. doi: 10.3969/j.issn.1001-5256.2017.08.040 |
[14] | Xu ShanShan, Chen YaLi, Zhang Jing. Role of ADAMTS13 in diagnosis and pathogenesis of liver diseases[J]. Journal of Clinical Hepatology, 2016, 32(2): 390-392. doi: 10.3969/j.issn.1001-5256.2016.02.043 |
[15] | Guo Jing, Sun Mei. Diagnosis and differential diagnosis of diseases with elevated aminotransferase in children[J]. Journal of Clinical Hepatology, 2015, 31(8): 1230-1234. doi: 10.3969/j.issn.1001-5256.2015.08.012 |
[16] | Yang WeiMin, Xin GuiJie, Ding ShengNan. Levels and clinical significance of serum 25-hydroxy vitamin D in patients with chronic liver disease[J]. Journal of Clinical Hepatology, 2015, 31(5): 754-757. doi: 10.3969/j.issn.1001-5256.2015.05.029 |
[17] | Zhang Qian, Han Tao. Research progress in advanced oxidation protein products in liver diseases[J]. Journal of Clinical Hepatology, 2013, 29(8): 581-584. doi: 10.3969/j.issn.1001-5256.2013.08.007 |
[18] | Zhang Zhe, Guo JinSheng. The role of high mobility group box 1 in human liver diseases[J]. Journal of Clinical Hepatology, 2011, 27(10): 1116-1120. |