[1] |
LI X, SHAO C, SHI Y, et al. Lessons learned from the blockade of immune checkpoints in cancer immunotherapy[J]. J Hematol Oncol, 2018, 11(1): 31. DOI: 10.1186/s13045-018-0578-4.
|
[2] |
COX MA, NECHANITZKY R, MAK TW. Check point inhibitors as therapies for infectious diseases[J]. Curr Opin Immunol, 2017, 48: 61-67. DOI: 10.1016/j.coi.2017.07.016.
|
[3] |
SHERGOLD AL, MILLAR R, NIBBS R. Understanding and overcoming the resistance of cancer to PD-1/PD-L1 blockade[J]. Pharmacol Res, 2019, 145: 104258. DOI: 10.1016/j.phrs.2019.104258.
|
[4] |
ZHAO X, SUBRAMANIAN S. Intrinsic resistance of solid tumors to immune checkpoint blockade therapy[J]. Cancer Res, 2017, 77(4): 817-822. DOI: 10.1158/0008-5472.CAN-16-2379.
|
[5] |
WANG J, YUAN R, SONG W, et al. PD-1, PD-L1 (B7-H1) and tumor-site immune modulation therapy: The historical perspective[J]. J Hematol Oncol, 2017, 10(1): 34. DOI: 10.1186/s13045-017-0403-5.
|
[6] |
JENKINS RW, BARBIE DA, FLAHERTY KT. Mechanisms of resistance to immune checkpoint inhibitors[J]. Br J Cancer, 2018, 118(1): 9-16. DOI: 10.1038/bjc.2017.434.
|
[7] |
LEE SJ, BYEON SJ, LEE J, et al. LAG3 in solid tumors as a potential novel immunotherapy target[J]. J Immunother, 2019, 42(8): 279-283. DOI: 10.1097/CJI.0000000000000283.
|
[8] |
YU X, ZHENG Y, MAO R, et al. BTLA/HVEM signaling: Milestones in research and role in chronic hepatitis B virus infection[J]. Front Immunol, 2019, 10: 617. DOI: 10.3389/fimmu.2019.00617.
|
[9] |
SUN J, LU Q, SANMANMED MF, et al. Siglec-15 as an emerging target for next-generation cancer immunotherapy[J]. Clin Cancer Res, 2021, 27(3): 680-688. DOI: 10.1158/1078-0432.CCR-19-2925.
|
[10] |
TRIEBEL F, JITSUKAWA S, BAIXERAS E, et al. LAG-3, a novel lymphocyte activation gene closely related to CD4[J]. J Exp Med, 1990, 171(5): 1393-1405. DOI: 10.1084/jem.171.5.1393.
|
[11] |
CRISE B, ROSE JK. Identification of palmitoylation sites on CD4, the human immunodeficiency virus receptor[J]. J Biol Chem, 1992, 267(19): 13593-13597. DOI: 10.1016/S0021-9258(18)42253-3
|
[12] |
TURNER JM, BRODSKY MH, IRVING BA, et al. Interaction of the unique N-terminal region of tyrosine kinase p56lck with cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs[J]. Cell, 1990, 60(5): 755-765. DOI: 10.1016/0092-8674(90)90090-2.
|
[13] |
KOUO T, HUANG L, PUCSEK AB, et al. Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells[J]. Cancer Immunol Res, 2015, 3(4): 412-423. DOI: 10.1158/2326-6066.CIR-14-0150.
|
[14] |
XU F, LIU J, LIU D, et al. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses[J]. Cancer Res, 2014, 74(13): 3418-3428. DOI: 10.1158/0008-5472.CAN-13-2690.
|
[15] |
ANNUNZIATO F, MANETTI R, TOMASÉVIC I, et al. Expression and release of LAG-3-encoded protein by human CD4+ T cells are associated with IFN-gamma production[J]. FASEB J, 1996, 10(7): 769-776. DOI: 10.1096/fasebj.10.7.8635694.
|
[16] |
LI N, WANG Y, FORBES K, et al. Metalloproteases regulate T-cell proliferation and effector function via LAG-3[J]. EMBO J, 2007, 26(2): 494-504. DOI: 10.1038/sj.emboj.7601520.
|
[17] |
TIAN X, ZHANG A, QIU C, et al. The upregulation of LAG-3 on T cells defines a subpopulation with functional exhaustion and correlates with disease progression in HIV-infected subjects[J]. J Immunol, 2015, 194(8): 3873-3882. DOI: 10.4049/jimmunol.1402176.
|
[18] |
BUTLER NS, MOEBIUS J, PEWE LL, et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection[J]. Nat Immunol, 2011, 13(2): 188-195. DOI: 10.1038/ni.2180.
|
[19] |
MATSUZAKI J, GNJATIC S, MHAWECH-FAUCEGLIA P, et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer[J]. Proc Natl Acad Sci U S A, 2010, 107(17): 7875-7880. DOI: 10.1073/pnas.1003345107.
|
[20] |
WANG J, SANMAMED MF, DATAR I, et al. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3[J]. Cell, 2019, 176(1-2): 334-347.e12. DOI: 10.1016/j.cell.2018.11.010.
|
[21] |
MAEDA TK, SUGIURA D, OKAZAKI IM, et al. Atypical motifs in the cytoplasmic region of the inhibitory immune co-receptor LAG-3 inhibit T cell activation[J]. J Biol Chem, 2019, 294(15): 6017-6026. DOI: 10.1074/jbc.RA119.007455.
|
[22] |
WORKMAN CJ, DUGGER KJ, VIGNALI DA. Cutting edge: Molecular analysis of the negative regulatory function of lymphocyte activation gene-3[J]. J Immunol, 2002, 169(10): 5392-5395. DOI: 10.4049/jimmunol.169.10.5392.
|
[23] |
YE B, LI X, DONG Y, et al. Increasing LAG-3 expression suppresses T-cell function in chronic hepatitis B: A balance between immunity strength and liver injury extent[J]. Medicine (Baltimore), 2017, 96(1): e5275. DOI: 10.1097/MD.0000000000005275.
|
[24] |
DONG Y, LI X, ZHANG L, et al. CD4+ T cell exhaustion revealed by high PD-1 and LAG-3 expression and the loss of helper T cell function in chronic hepatitis B[J]. BMC Immunol, 2019, 20(1): 27. DOI: 10.1186/s12865-019-0309-9.
|
[25] |
ZIOGAS DC, KOSTANTINOU F, CHOLONGITAS E, et al. Reconsidering the management of patients with cancer with viral hepatitis in the era of immunotherapy[J]. J Immunother Cancer, 2020, 8(2): e000943. DOI: 10.1136/jitc-2020-000943.
|
[26] |
CHEN N, LIU Y, GUO Y, et al. Lymphocyte activation gene 3 negatively regulates the function of intrahepatic hepatitis C virus-specific CD8+ T cells[J]. J Gastroenterol Hepatol, 2015, 30(12): 1788-1795. DOI: 10.1111/jgh.13017.
|
[27] |
ZHANG J, LIU W, XIE T, et al. Elevated LAG-3 on CD4+ T cells negatively correlates with neutralizing antibody response during HCV infection[J]. Immunol Lett, 2019, 212: 46-52. DOI: 10.1016/j.imlet.2019.06.003.
|
[28] |
KROY DC, CIUFFREDA D, COOPERRIDER JH, et al. Liver environment and HCV replication affect human T-cell phenotype and expression of inhibitory receptors[J]. Gastroenterology, 2014, 146(2): 550-561. DOI: 10.1053/j.gastro.2013.10.022.
|
[29] |
WANG L, QIU JP, YU L, et al. Increased numbers of CD5+CD19+CD1dhighIL-10+ bregs, CD4+Foxp3+ tregs, CD4+CXCR5+Foxp3+ follicular regulatory T (TFR) cells in CHB or CHC patients[J]. J Transl Med, 2014, 12: 251. DOI: 10.1186/s12967-014-0251-9.
|
[30] |
EBINUMA H, NAKAMOTO N, LI Y, et al. Identification and in vitro expansion of functional antigen-specific CD25+ FoxP3+ regulatory T cells in hepatitis C virus infection[J]. J Virol, 2008, 82(10): 5043-5053. DOI: 10.1128/JVI.01548-07.
|
[31] |
OKWOR C, OH JS, CRAWLEY AM, et al. Expression of inhibitory receptors on T and NK cells defines immunological phenotypes of HCV patients with advanced liver fibrosis[J]. iScience, 2020, 23(9): 101513. DOI: 10.1016/j.isci.2020.101513.
|
[32] |
FEDERICO P, PETRILLO A, GIORDANO P, et al. Immune checkpoint inhibitors in hepatocellular carcinoma: Current status and novel perspectives[J]. Cancers (Basel), 2020, 12(10): 3025. DOI: 10.3390/cancers12103025.
|
[33] |
YUEN MF, HOU JL, CHUTAPUTTI A, et al. Hepatocellular carcinoma in the Asia Pacific region[J]. Gastroenterol Hepatol, 2009, 24(3): 346-353. DOI: 10.1111/j.1440-1746.2009.05784.x.
|
[34] |
WANG X, HE Q, SHEN H, et al. Genetic and phenotypic difference in CD8+ T cell exhaustion between chronic hepatitis B infection and hepatocellular carcinoma[J]. J Med Genet, 2019, 56(1): 18-21. DOI: 10.1136/jmedgenet-2018-105267.
|
[35] |
GUO M, YUAN F, QI F, et al. Expression and clinical significance of LAG-3, FGL1, PD-L1 and CD8+T cells in hepatocellular carcinoma using multiplex quantitative analysis[J]. J Transl Med, 2020, 18(1): 306. DOI: 10.1186/s12967-020-02469-8.
|
[36] |
CHEN X, ZOU J, SHEN B, et al. Differences between exhausted CD8+T cells in hepatocellular carcinoma patients with and without Uremia[J]. Can J Physiol Pharmacol, 2020. DOI: 10.1139/cjpp-2019-0641.[Online ahead of print]
|
[37] |
WANG J, WEI W, TANG Q, et al. Oxysophocarpine suppresses hepatocellular carcinoma growth and sensitizes the therapeutic blockade of anti-Lag-3 via reducing FGL1 expression[J]. Cancer Med, 2020, 9(19): 7125-7136. DOI: 10.1002/cam4.3151.
|
[38] |
KRAMAN M, FAROUDI M, ALLEN NL, et al. FS118, a bispecific antibody targeting LAG-3 and PD-L1, enhances T-Cell activation resulting in potent antitumor activity[J]. Clin Cancer Res, 2020, 26(13): 3333-3344. DOI: 10.1158/1078-0432.CCR-19-3548.
|
[39] |
WANG P, ZHENG SG. Regulatory T cells and B cells: Implication on autoimmune diseases[J]. Int J Clin Exp Pathol, 2013, 6(12): 2668-2674. http://europepmc.org/abstract/med/24294353
|
[40] |
LIBERAL R, GRANT CR, HOLDER BS, et al. The impaired immune regulation of autoimmune hepatitis is linked to a defective galectin-9/tim-3 pathway[J]. Hepatology, 2012, 56(2): 677-686. DOI: 10.1002/hep.25682.
|
[41] |
SEBODE M, PEISELER M, FRANKE B, et al. Reduced FOXP3(+) regulatory T cells in patients with primary sclerosing cholangitis are associated with IL2RA gene polymorphisms[J]. J Hepatol, 2014, 60(5): 1010-1016. DOI: 10.1016/j.jhep.2013.12.027.
|
[42] |
WOO SR, TURNIS ME, GOLDBERG MV, et al. 2012. Immune inhibitorymolecules LAG-3 and PD-1 synergistically regulate T-cell function to promotetumoral immune escape[J]. Cancer Res, 2012, 72(4): 917-927. DOI: 10.1158/0008-5472.CAN-11-1620.
|
[43] |
COMONT T, BELLIERE J, SIBAUD V, et al. Immune-related adverse events after immune checkpoints inhibitors in 2019: An update[J]. Rev Med Interne, 2020, 41(1): 37-45. DOI: 10.1016/j.revmed.2019.09.005.
|
[44] |
LIBERAL R, GRANT CR, YUKSEL M, et al. Regulatory T-cell conditioning endows activated effector T cells with suppressor function in autoimmune hepatitis/autoimmune sclerosing cholangitis[J]. Hepatology, 2017, 66(5): 1570-1584. DOI: 10.1002/hep.29307.
|
[45] |
LIN L, SHEN M, RUAN JW. Expression of programmed death receptor 1 in liver tissue of patients with autoimmune hepatitis and its clinical implications[J]. J Prac Hepatol, 2019, 22(2): 204-207. DOI: 10.3969/j.issn.1672-5069.2019.02.013.
林兰, 沈敏, 阮健文. 自身免疫性肝炎患者肝组织程序性死亡受体1表达及其临床意义探讨[J]. 实用肝脏病杂志, 2019, 22(2): 204-207. DOI: 10.3969/j.issn.1672-5069.2019.02.013.
|
[46] |
WANG H, MEHAL W, NAGY LE, et al. Immunological mechanisms and therapeutic targets of fatty liver diseases[J]. Cell Mol Immunol, 2021, 18(1): 73-91. DOI: 10.1038/s41423-020-00579-3.
|
[47] |
SHALAPOUR S, LIN XJ, BASTIAN IN, et al. Author correction: Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity[J]. Nature, 2018, 561(7721): e1. DOI: 10.1038/s41586-018-0304-y.
|
[48] |
Chinese Doctor Association, Chinese College of Surgeon(CCS), Chinese Committee for Hadytidology(CCH). Expert consensus on diagnosis and treatment of hepatic cystic and alveolar echinococcosis (2019 edition)[J]. Chin J Dig Surg, 2019, 18(8): 711-721. DOI: 10.3760/cma.j.issn.1673-9752.2019.08.002.
中国医师协会外科医师分会包虫病外科专业委员会. 肝两型包虫病诊断与治疗专家共识(2019版)[J]. 中华消化外科杂志, 2019, 18(8): 711-721. DOI: 10.3760/cma.j.issn.1673-9752.2019.08.002.
|
[49] |
LIU HD, WANG HB, FAN HN, et al. Alveolar echinococcosis and immune evasion[J]. Chin J Parasitol Parasit Dis, 2018, 36(6): 655-660. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSB201806024.htm
刘寒冬, 王宏宾, 樊海宁, 等. 多房棘球蚴病的免疫逃避机制[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 655-660. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSB201806024.htm
|
[50] |
BELLANGER AP, COURQUET S, PALLANDRE JR, et al. Echinococcus multilocularis vesicular fluid induces the expression of immune checkpoint proteins in vitro[J]. Parasite Immunol, 2020, 42(6): e12711. DOI: 10.1111/pim.12711.
|
[51] |
WANG ZX, LI Y, WANG JY, et al. Hepatic alveolarechinococcosis recurring after autologous liver transplanta-tion: A case report[J]. J Clin Hepatol, 2020, 36(8): 1832-1834. DOI: 10.3969/j.issn.1001-5256.2020.08.033.
王志鑫, 李姚, 王江瑜, 等. 肝泡型包虫病自体肝移植术后复发1例报告[J]. 临床肝胆病杂志, 2020, 36(8): 1832-1834. DOI: 10.3969/j.issn.1001-5256.2020.08.033.
|