中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

Advances in the multi-omics research on nonalcoholic fatty liver disease

DOI: 10.12449/JCH240626
Research funding:

Yunnan Province Applied Basic Research Special Project (202301AT070152)

More Information
  • Corresponding author: WU Hui, kyz_ggyx@163.com (ORCID: 0009-0003-5966-3570)
  • Received Date: 2023-08-24
  • Accepted Date: 2023-11-24
  • Published Date: 2024-06-25
  • The prevalence rate of nonalcoholic fatty liver disease (NAFLD) reaches up to 30% around the world, and the disease has a serious impact on human health and constitutes a public health burden. Due to difficulties in the diagnosis and monitoring of NAFLD, it is important to identify potential drug targets and biomarkers, and multi-omics techniques hold great promise in the search for early diagnostic markers, therapeutic targets, and outcome and prognostic assessment of NAFLD. This article reviews the research advances in multi-omics techniques in the field of NAFLD in recent years, in order to provide a richer theoretical basis and new strategies for the prevention and treatment of NAFLD.

     

  • [1]
    ALBILLOS A, de GOTTARDI A, RESCIGNO M. The gut-liver axis in liver disease: Pathophysiological basis for therapy[J]. J Hepatol, 2020, 72( 3): 558- 577. DOI: 10.1016/j.jhep.2019.10.003.
    [2]
    ZENG FL, SHI MJ, XIAO HM, et al. WGCNA-based identification of hub genes and key pathways involved in nonalcoholic fatty liver disease[J]. Biomed Res Int, 2021, 2021: 5633211. DOI: 10.1155/2021/5633211.
    [3]
    ZENG TF, CHEN GL, QIAO XB, et al. NUSAP1 could be a potential target for preventing NAFLD progression to liver cancer[J]. Front Pharmacol, 2022, 13: 823140. DOI: 10.3389/fphar.2022.823140.
    [4]
    DAI WR, SUN Y, JIANG ZY, et al. Key genes associated with non-alcoholic fatty liver disease and acute myocardial infarction[J]. Med Sci Monit, 2020, 26: e922492. DOI: 10.12659/MSM.922492.
    [5]
    HANDELMAN SK, PUENTES YM, KUPPA A, et al. Population-based meta-analysis and gene-set enrichment identifies FXR/RXR pathway as common to fatty liver disease and serum lipids[J]. Hepatol Commun, 2022, 6( 11): 3120- 3131. DOI: 10.1002/hep4.2066.
    [6]
    CHEN JH, ZHOU H, JIN HW, et al. Role of inflammatory factors in mediating the effect of lipids on nonalcoholic fatty liver disease: A two-step, multivariable Mendelian randomization study[J]. Nutrients, 2022, 14( 20): 4434. DOI: 10.3390/nu14204434.
    [7]
    GHODSIAN N, ABNER E, EMDIN CA, et al. Electronic health record-based genome-wide meta-analysis provides insights on the genetic architecture of non-alcoholic fatty liver disease[J]. Cell Rep Med, 2021, 2( 11): 100437. DOI: 10.1016/j.xcrm.2021.100437.
    [8]
    SHARMA D, MANDAL P. NAFLD: Genetics and its clinical implications[J]. Clin Res Hepatol Gastroenterol, 2022, 46( 9): 102003. DOI: 10.1016/j.clinre.2022.102003.
    [9]
    NANO J, GHANBARI M, WANG WS, et al. Epigenome-wide association study identifies methylation sites associated with liver enzymes and hepatic steatosis[J]. Gastroenterology, 2017, 153( 4): 1096- 1106. e 2. DOI: 10.1053/j.gastro.2017.06.003.
    [10]
    ZHANG RN, PAN Q, ZHENG RD, et al. Genome-wide analysis of DNA methylation in human peripheral leukocytes identifies potential biomarkers of nonalcoholic fatty liver disease[J]. Int J Mol Med, 2018, 42( 1): 443- 452. DOI: 10.3892/ijmm.2018.3583.
    [11]
    WU JY, ZHANG RN, SHEN F, et al. Altered DNA methylation sites in peripheral blood leukocytes from patients with simple steatosis and nonalcoholic steatohepatitis(NASH)[J]. Med Sci Monit, 2018, 24: 6946- 6967. DOI: 10.12659/MSM.909747.
    [12]
    HYUN J, JUNG Y. DNA methylation in nonalcoholic fatty liver disease[J]. Int J Mol Sci, 2020, 21( 21): 8138. DOI: 10.3390/ijms21218138.
    [13]
    MA JT, NANO J, DING JZ, et al. A peripheral blood DNA methylation signature of hepatic fat reveals a potential causal pathway for nonalcoholic fatty liver disease[J]. Diabetes, 2019, 68( 5): 1073- 1083. DOI: 10.2337/DB18-1193.
    [14]
    ASSANTE G, CHANDRASEKARAN S, NG S, et al. Correction: Acetyl-CoA metabolism drives epigenome change and contributes to carcinogenesis risk in fatty liver disease[J]. Genome Med, 2023, 15( 1): 38. DOI: 10.1186/s13073-023-01190-7.
    [15]
    FU SF, YU MH, TAN YY, et al. Role of histone deacetylase on nonalcoholic fatty liver disease[J]. Expert Rev Gastroenterol Hepatol, 2021, 15( 4): 353- 361. DOI: 10.1080/17474124.2021.1854089.
    [16]
    CHUNG MY, KIM HJ, CHOI HK, et al. Black mulberry extract elicits hepatoprotective effects in nonalcoholic fatty liver disease models by inhibition of histone acetylation[J]. J Med Food, 2021, 24( 9): 978- 986. DOI: 10.1089/jmf.2021.K.0048.
    [17]
    BRICAMBERT J, ALVES-GUERRA MC, ESTEVES P, et al. The histone demethylase Phf2 acts as a molecular checkpoint to prevent NAFLD progression during obesity[J]. Nat Commun, 2018, 9: 2092. DOI: 10.1038/s41467-018-04361-y.
    [18]
    TIAN C, MIN XW, ZHAO YX, et al. MRG15 aggravates non-alcoholic steatohepatitis progression by regulating the mitochondrial proteolytic degradation of TUFM[J]. J Hepatol, 2022, 77( 6): 1491- 1503. DOI: 10.1016/j.jhep.2022.07.017.
    [19]
    CAO YN, XUE Y, XUE L, et al. Hepatic menin recruits SIRT1 to control liver steatosis through histone deacetylation[J]. J Hepatol, 2013, 59( 6): 1299- 1306. DOI: 10.1016/j.jhep.2013.07.011.
    [20]
    RIEGL SD, STARNES C, JIMA DD, et al. The imprinted gene Zac1 regulates steatosis in developmental cadmium-induced nonalcoholic fatty liver disease[J]. Toxicol Sci, 2023, 191( 1): 34- 46. DOI: 10.1093/toxsci/kfac106.
    [21]
    BAPTISSART M, BRADISH CM, JONES BS, et al. Zac1 and the Imprinted Gene Network program juvenile NAFLD in response to maternal metabolic syndrome[J]. Hepatology, 2022, 76( 4): 1090- 1104. DOI: 10.1002/hep.32363.
    [22]
    OKAMOTO K, KODA M, OKAMOTO T, et al. A series of microRNA in the chromosome 14q32.2 maternally imprinted region related to progression of non-alcoholic fatty liver disease in a mouse model[J]. PLoS One, 2016, 11( 5): e0154676. DOI: 10.1371/journal.pone.0154676.
    [23]
    ZHOU B, JIA LJ, ZHANG ZJ, et al. The nuclear orphan receptor NR2F6 promotes hepatic steatosis through upregulation of fatty acid transporter CD36[J]. Adv Sci(Weinh), 2020, 7( 21): 2002273. DOI: 10.1002/advs.202002273.
    [24]
    SUN CZ, LIU XY, YI ZJ, et al. Genome-wide analysis of long noncoding RNA expression profiles in patients with non-alcoholic fatty liver disease[J]. IUBMB Life, 2015, 67( 11): 847- 852. DOI: 10.1002/iub.1442.
    [25]
    LONG JK, DAI W, ZHENG YW, et al. MiR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease[J]. Mol Med, 2019, 25( 1): 26. DOI: 10.1186/s10020-019-0085-2.
    [26]
    GUO Y, XIONG YH, SHENG Q, et al. A micro-RNA expression signature for human NAFLD progression[J]. J Gastroenterol, 2016, 51( 10): 1022- 1030. DOI: 10.1007/s00535-016-1178-0.
    [27]
    HU MJ, LONG M, DAI RJ. Acetylation of H3K27 activated lncRNA NEAT1 and promoted hepatic lipid accumulation in non-alcoholic fatty liver disease via regulating miR-212-5p/GRIA3[J]. Mol Cell Biochem, 2022, 477( 1): 191- 203. DOI: 10.1007/s11010-021-04269-0.
    [28]
    OKAMOTO K, KODA M, OKAMOTO T, et al. Serum miR-379 expression is related to the development and progression of hypercholesterolemia in non-alcoholic fatty liver disease[J]. PLoS One, 2020, 15( 2): e0219412. DOI: 10.1371/journal.pone.0219412.
    [29]
    FANG ZQ, DOU GR, WANG L. MicroRNAs in the pathogenesis of nonalcoholic fatty liver disease[J]. Int J Biol Sci, 2021, 17( 7): 1851- 1863. DOI: 10.7150/ijbs.59588.
    [30]
    SHEN X, ZHANG YJ, JI XT, et al. Long noncoding RNA lncRHL regulates hepatic VLDL secretion by modulating hnRNPU/BMAL1/MTTP axis[J]. Diabetes, 2022, 71( 9): 1915- 1928. DOI: 10.2337/db21-1145.
    [31]
    JIN SS, LIN CJ, LIN XF, et al. Silencing lncRNA NEAT1 reduces nonalcoholic fatty liver fat deposition by regulating the miR-139-5p/c-Jun/SREBP-1c pathway[J]. Ann Hepatol, 2022, 27( 2): 100584. DOI: 10.1016/j.aohep.2021.100584.
    [32]
    ZUO ZH, ZENG CY, JIANG Y, et al. Regulatory role of long non-coding RNAs in the development and progression of nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2021, 37( 7): 1704- 1707. DOI: 10.3969/j.issn.1001-5256.2021.07.048.

    左志华, 曾楚怡, 姜瑶, 等. 长链非编码RNA在非酒精性脂肪性肝病发生发展中的调控作用[J]. 临床肝胆病杂志, 2021, 37( 7): 1704- 1707. DOI: 10.3969/j.issn.1001-5256.2021.07.048.
    [33]
    YUAN XL, WANG J, TANG XY, et al. Berberine ameliorates nonalcoholic fatty liver disease by a global modulation of hepatic mRNA and lncRNA expression profiles[J]. J Transl Med, 2015, 13: 24. DOI: 10.1186/s12967-015-0383-6.
    [34]
    LI PF, SHAN KS, LIU Y, et al. CircScd1 promotes fatty liver disease via the Janus kinase 2/signal transducer and activator of transcription 5 pathway[J]. Dig Dis Sci, 2019, 64( 1): 113- 122. DOI: 10.1007/s10620-018-5290-2.
    [35]
    GUO XY, HE CX, WANG YQ, et al. Circular RNA profiling and bioinformatic modeling identify its regulatory role in hepatic steatosis[J]. Biomed Res Int, 2017, 2017: 5936171. DOI: 10.1155/2017/5936171.
    [36]
    CHEN X, TAN QQ, TAN XR, et al. Circ_0057558 promotes nonalcoholic fatty liver disease by regulating ROCK1/AMPK signaling through targeting miR-206[J]. Cell Death Dis, 2021, 12( 9): 809. DOI: 10.1038/s41419-021-04090-z.
    [37]
    LIU W, CAO HC, YAN J, et al.‘Micro-managers’ of hepatic lipid metabolism and NAFLD[J]. Wiley Interdiscip Rev RNA, 2015, 6( 5): 581- 593. DOI: 10.1002/wrna.1295.
    [38]
    HORIE T, NISHINO T, BABA O, et al. MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice[J]. Nat Commun, 2013, 4: 2883. DOI: 10.1038/ncomms3883.
    [39]
    GOEDEKE L, SALERNO A, RAMÍREZ CM, et al. Long-term therapeutic silencing of miR-33 increases circulating triglyceride levels and hepatic lipid accumulation in mice[J]. EMBO Mol Med, 2014, 6( 9): 1133- 1141. DOI: 10.15252/emmm.201404046.
    [40]
    CHEN Y, CHEN XY, GAO JG, et al. Long noncoding RNA FLRL2 alleviated nonalcoholic fatty liver disease through Arntl-Sirt1 pathway[J]. FASEB J, 2019, 33( 10): 11411- 11419. DOI: 10.1096/fj.201900643RRR.
    [41]
    ZAIOU M. Noncoding RNAs as additional mediators of epigenetic regulation in nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2022, 28( 35): 5111- 5128. DOI: 10.3748/wjg.v28.i35.5111.
    [42]
    GONG ZH, TANG JL, XIANG TX, et al. Genome-wide identification of long noncoding RNAs in CCl4-induced liver fibrosis via RNA sequencing[J]. Mol Med Rep, 2018, 18( 1): 299- 307. DOI: 10.3892/mmr.2018.8986.
    [43]
    CHIEN Y, TSAI PH, LAI YH, et al. CircularRNA as novel biomarkers in liver diseases[J]. J Chin Med Assoc, 2020, 83( 1): 15- 17. DOI: 10.1097/JCMA.0000000000000230.
    [44]
    LI J, QI J, TANG YS, et al. A nanodrug system overexpressed circRNA_0001805 alleviates nonalcoholic fatty liver disease via miR-106a-5p/miR-320a and ABCA1/CPT1 axis[J]. J Nanobiotechnology, 2021, 19( 1): 363. DOI: 10.1186/s12951-021-01108-8.
    [45]
    JIN X, GAO JG, ZHENG RH, et al. Antagonizing circRNA_002581-miR-122-CPEB1 axis alleviates NASH through restoring PTEN-AMPK-mTOR pathway regulated autophagy[J]. Cell Death Dis, 2020, 11( 2): 123. DOI: 10.1038/s41419-020-2293-7.
    [46]
    ZHANG LQ, ZHANG ZG, LI CB, et al. S100A11 promotes liver steatosis via FOXO1-mediated autophagy and lipogenesis[J]. Cell Mol Gastroenterol Hepatol, 2021, 11( 3): 697- 724. DOI: 10.1016/j.jcmgh.2020.10.006.
    [47]
    PENG YM, ZENG Q, WAN LM, et al. GP73 is a TBC-domain Rab GTPase-activating protein contributing to the pathogenesis of non-alcoholic fatty liver disease without obesity[J]. Nat Commun, 2021, 12( 1): 7004. DOI: 10.1038/s41467-021-27309-1.
    [48]
    LI JY, KOU CJ, SUN TT, et al. Identification and validation of hub immune-related genes in non-alcoholic fatty liver disease[J]. Int J Gen Med, 2023, 16: 2609- 2621. DOI: 10.2147/IJGM.S413545.
    [49]
    NIU LL, GEYER PE, WEWER ALBRECHTSEN NJ, et al. Plasma proteome profiling discovers novel proteins associated with non-alcoholic fatty liver disease[J]. Mol Syst Biol, 2019, 15( 3): e8793. DOI: 10.15252/msb.20188793.
    [50]
    da SILVA LIMA N, FONDEVILA MF, NÓVOA E, et al. Inhibition of ATG3 ameliorates liver steatosis by increasing mitochondrial function[J]. J Hepatol, 2022, 76( 1): 11- 24. DOI: 10.1016/j.jhep.2021.09.008.
    [51]
    YOKOYAMA C, WANG X, BRIGGS MR, et al. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene[J]. Cell, 1993, 75( 1): 187- 197.
    [52]
    WANG CE, XU WT, GONG J, et al. Research progress in treatment of nonalcoholic fatty liver disease[J]. Clin J Med Off, 2022, 50( 9): 897- 899, 903. DOI: 10.16680/j.1671-3826.2022.09.06.

    王彩娥, 许文涛, 宫建, 等. 非酒精性脂肪性肝病治疗研究进展[J]. 临床军医杂志, 2022, 50( 9): 897- 899, 903. DOI: 10.16680/j.1671-3826.2022.09.06.
    [53]
    JUNG Y, LEE MK, PURI P, et al. Circulating lipidomic alterations in obese and non-obese subjects with non-alcoholic fatty liver disease[J]. Aliment Pharmacol Ther, 2020, 52( 10): 1603- 1614. DOI: 10.1111/apt.16066.
    [54]
    LU QR, TIAN XY, WU H, et al. Metabolic changes of hepatocytes in NAFLD[J]. Front Physiol, 2021, 12: 710420. DOI: 10.3389/fphys.2021.710420.
    [55]
    CANFORA EE, MEEX RCR, VENEMA K, et al. Gut microbial metabolites in obesity, NAFLD and T2DM[J]. Nat Rev Endocrinol, 2019, 15( 5): 261- 273. DOI: 10.1038/s41574-019-0156-z.
    [56]
    TANG Y, CHEN X, CHEN Q, et al. Association of serum methionine metabolites with non-alcoholic fatty liver disease: A cross-sectional study[J]. Nutr Metab, 2022, 19( 1): 21. DOI: 10.1186/s12986-022-00647-7.
    [57]
    OGAWA Y, KOBAYASHI T, HONDA Y, et al. Metabolomic/lipidomic-based analysis of plasma to diagnose hepatocellular ballooning in patients with non-alcoholic fatty liver disease: A multicenter study[J]. Hepatol Res, 2020, 50( 8): 955- 965. DOI: 10.1111/hepr.13528.
    [58]
    CAUSSY C, CHUANG JC, BILLIN A, et al. Plasma eicosanoids as noninvasive biomarkers of liver fibrosis in patients with nonalcoholic steatohepatitis[J]. Therap Adv Gastroenterol, 2020, 13: 1756284820923904. DOI: 10.1177/1756284820923904.
    [59]
    MCGLINCHEY AJ, GOVAERE O, GENG DW, et al. Metabolic signatures across the full spectrum of non-alcoholic fatty liver disease[J]. JHEP Rep, 2022, 4( 5): 100477. DOI: 10.1016/j.jhepr.2022.100477.
    [60]
    HAAM JH, LEE YK, SUH E, et al. Characteristics of urine organic acid metabolites in nonalcoholic fatty liver disease assessed using magnetic resonance imaging with elastography in Korean adults[J]. Diagnostics(Basel), 2022, 12( 5): 1199. DOI: 10.3390/diagnostics12051199.
    [61]
    DONG S, ZHAN ZY, CAO HY, et al. Urinary metabolomics analysis identifies key biomarkers of different stages of nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2017, 23( 15): 2771- 2784. DOI: 10.3748/wjg.v23.i15.2771.
    [62]
    KIM HY. Recent advances in nonalcoholic fatty liver disease metabolomics[J]. Clin Mol Hepatol, 2021, 27( 4): 553- 559. DOI: 10.3350/cmh.2021.0127.
    [63]
    HOU TY, TIAN Y, CAO ZY, et al. Cytoplasmic SIRT6-mediated ACSL5 deacetylation impedes nonalcoholic fatty liver disease by facilitating hepatic fatty acid oxidation[J]. Mol Cell, 2022, 82( 21): 4099- 4115. e 9. DOI: 10.1016/j.molcel.2022.09.018.
    [64]
    DONG QM, KUEFNER MS, DENG X, et al. Sex-specific differences in hepatic steatosis in obese spontaneously hypertensive(SHROB) rats[J]. Biol Sex Differ, 2018, 9( 1): 40. DOI: 10.1186/s13293-018-0202-x.
    [65]
    LIU J, SHI Y, PENG DY, et al. Salvia miltiorrhiza bge.(Danshen) in the treating non-alcoholic fatty liver disease based on the regulator of metabolic targets[J]. Front Cardiovasc Med, 2022, 9: 842980. DOI: 10.3389/fcvm.2022.842980.
    [66]
    di CIAULA A, PASSARELLA S, SHANMUGAM H, et al. Nonalcoholic fatty liver disease(NAFLD). mitochondria as players and targets of therapies?[J]. Int J Mol Sci, 2021, 22( 10): 5375. DOI: 10.3390/ijms22105375.
    [67]
    ESLER WP, BENCE KK. Metabolic targets in nonalcoholic fatty liver disease[J]. Cell Mol Gastroenterol Hepatol, 2019, 8( 2): 247- 267. DOI: 10.1016/j.jcmgh.2019.04.007.
    [68]
    CHEN JZ, VITETTA L. Gut microbiota metabolites in NAFLD pathogenesis and therapeutic implications[J]. Int J Mol Sci, 2020, 21( 15): 5214. DOI: 10.3390/ijms21155214.
  • Relative Articles

    [1]Kai CHANG, Yanyan WANG, Zhongyong JIANG, Wei SUN, Chenxia LIU, Wanlin NA, Hongxuan XU, Jing XIE, Yuan LIU, Min CHEN. Proteomic analysis and validation of DNA repair regulation in the process of hepatocellular carcinoma recurrence[J]. Journal of Clinical Hepatology, 2024, 40(2): 319-326. doi: 10.12449/JCH240216
    [2]Qingling ZHONG, Liangping LI. Role of gut microbiota and tryptophan metabolism in nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2022, 38(6): 1411-1415. doi: 10.3969/j.issn.1001-5256.2022.06.040
    [3]Menghao LI, Kai LI, Shihao TANG, Zhengyu WANG, Wengang GUO, Zhanxin YIN, Guohong HAN. Changes in gut microbiota after transjugular intrahepatic portosystemic shunt in cirrhotic patients with mild hepatic encephalopathy in different prognosis groups[J]. Journal of Clinical Hepatology, 2021, 37(2): 326-330. doi: 10.3969/j.issn.1001-5256.2021.02.016
    [4]Xiaoge BEI, Jinjun CHEN, Beiling LI. Application of metagenomic next-generation sequencing in sepsis in liver cirrhosis[J]. Journal of Clinical Hepatology, 2021, 37(9): 2206-2209. doi: 10.3969/j.issn.1001-5256.2021.09.041
    [5]Meiying LI, Wanli JI, Wangzhenzu LIU, Tao WANG, Shengnan DU, Jingjing GAO, Yuanye JIANG, Cheng HU. A serum metabolomics study on the intervention of nonalcoholic fatty liver disease by equicaloric low-carbohydrate high-protein diet combined with aerobic exercise[J]. Journal of Clinical Hepatology, 2021, 37(11): 2605-2610. doi: 10.3969/j.issn.1001-5256.2021.11.023
    [6]Yuting LUAN, Zhongming HUANG, Wenjuan SHEN, Minghao HA, Zhibing XU. Research advances in metabolomics in nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2021, 37(4): 943-946. doi: 10.3969/j.issn.1001-5256.2021.04.047
    [7]Gao JingJing, Wang Tao, Jiang YuanYe, Cao Qin. Metabonomics and traditional Chinese medicine syndrome of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2020, 36(8): 1880-1882. doi: 10.3969/j.issn.1001-5256.2020.08.044
    [8]Hong Jia, Shi YiWen, Wu XiaoNing, You Hong. Application value of imaging diagnosis in nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2018, 34(12): 2698-2701. doi: 10.3969/j.issn.1001-5256.2018.12.041
    [9]Li Jie. Epidemiology characteristics of nonalcoholic fatty liver disease in Asia[J]. Journal of Clinical Hepatology, 2018, 34(12): 2515-2519. doi: 10.3969/j.issn.1001-5256.2018.12.006
    [10]Jiang LiNa, Zhao JingMin. Role of histological evaluation of the liver in clinical practice and research on nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2017, 33(12): 2303-2306. doi: 10.3969/j.issn.1001-5256.2017.12.009
    [11]Wang Yan, Hou JinLin. Hepatic fibrosis in nonalcoholic fatty liver disease and its quantitative assessment[J]. Journal of Clinical Hepatology, 2017, 33(12): 2296-2302. doi: 10.3969/j.issn.1001-5256.2017.12.008
    [12]Ding YuPing, Li Hai, Zhang Wen, Xia ShiHai, Bi Xun. Epidemiological characteristics of nonalcoholic fatty liver disease with elevated alanine aminotransferase and related risk factors[J]. Journal of Clinical Hepatology, 2017, 33(12): 2355-2360. doi: 10.3969/j.issn.1001-5256.2017.12.020
    [13]Liu YingLi, Zhang QiuZan. An excerpt of the Asia-Pacific Working Party on nonalcoholic fatty liver disease guidelines 2017[J]. Journal of Clinical Hepatology, 2017, 33(12): 2278-2282. doi: 10.3969/j.issn.1001-5256.2017.12.004
    [14]Zhou Xuan, Lai Yong. Research advances in the identification of clinical biomarkers for liver diseases using metabolomics based on ultra-performance liquid chromatography-mass spectrometry[J]. Journal of Clinical Hepatology, 2017, 33(5): 979-984. doi: 10.3969/j.issn.1001-5256.2017.05.040
    [15]Zhang LiJun, Jia XiaoFang, Wu DaGe, Liu XiaoQian, Huang Yan, Zhang JiaoLi, Cheng NengNeng. Proteome analysis of liver nonparenchymal cells from rats with alcoholic liver fibrosis[J]. Journal of Clinical Hepatology, 2014, 30(10): 1053-1059. doi: 10.3969/j.issn.1001-5256.2014.10.020
    [16]Wang JianGang, Fei XinYing, Song Qing. Application of proteomics in study of hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2014, 30(9): 958-960. doi: 10.3969/j.issn.1001-5256.2014.09.030
    [17]Wang XiaoYu, Luo JianPing, Cha XueQiang, Gu DongXiao. Application of proteomics and metabonomics in studies on alcoholic liver disease[J]. Journal of Clinical Hepatology, 2014, 30(2): 168-173. doi: 10.3969/j.issn.1001-5256.2014.02.018
    [18]Zhang LiJun, Jia XiaoFang, Teng ZhenLin, Cheng NengNeng. Biomarkers of liver cancer related to hepatitis B virus selected by proteomics[J]. Journal of Clinical Hepatology, 2011, 27(5): 553-557.
    [20]Shi Yue, Li YueGuo. Detection and evaluation of serum proteomic patters for hepatocellular carcinoma treated by interventional therapy Using SELDI-TOF-MS protein chip array[J]. Journal of Clinical Hepatology, 2009, 25(2): 122-124.
  • Cited by

    Periodical cited type(2)

    1. 姚承佼,蒲梦君,冯培民. 多组学整合技术在肠易激综合征中的研究进展. 中国中西医结合消化杂志. 2025(01): 81-88 .
    2. 禹佳宁,宋涛. 病理学、血清学及影像学诊断代谢相关脂肪性肝病的现状. 影像研究与医学应用. 2025(01): 13-15 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-030255075100125150
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.7 %FULLTEXT: 25.7 %META: 60.9 %META: 60.9 %PDF: 13.4 %PDF: 13.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.7 %其他: 6.7 %其他: 0.7 %其他: 0.7 %China: 0.4 %China: 0.4 %Falls Church: 0.2 %Falls Church: 0.2 %Fremont: 0.1 %Fremont: 0.1 %Seattle: 0.1 %Seattle: 0.1 %Tiruchi: 0.2 %Tiruchi: 0.2 %上海: 8.1 %上海: 8.1 %上饶: 0.1 %上饶: 0.1 %临汾: 0.1 %临汾: 0.1 %乌鲁木齐: 0.6 %乌鲁木齐: 0.6 %亚特兰大: 0.1 %亚特兰大: 0.1 %佛山: 0.2 %佛山: 0.2 %兰州: 0.3 %兰州: 0.3 %北京: 6.7 %北京: 6.7 %南京: 0.6 %南京: 0.6 %南宁: 0.5 %南宁: 0.5 %南昌: 0.3 %南昌: 0.3 %南通: 0.1 %南通: 0.1 %卡纳塔克: 0.2 %卡纳塔克: 0.2 %厦门: 1.6 %厦门: 1.6 %台州: 0.2 %台州: 0.2 %吉隆坡: 0.2 %吉隆坡: 0.2 %周口: 0.1 %周口: 0.1 %呼伦贝尔: 0.1 %呼伦贝尔: 0.1 %呼和浩特: 0.7 %呼和浩特: 0.7 %咸阳: 0.1 %咸阳: 0.1 %圣安东尼奥: 0.1 %圣安东尼奥: 0.1 %夏延: 0.1 %夏延: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.1 %大连: 0.1 %天津: 1.5 %天津: 1.5 %太原: 0.9 %太原: 0.9 %威海: 0.3 %威海: 0.3 %娄底: 0.1 %娄底: 0.1 %孝感: 0.3 %孝感: 0.3 %孟买: 0.5 %孟买: 0.5 %安康: 0.3 %安康: 0.3 %宜春: 0.4 %宜春: 0.4 %宿迁: 0.1 %宿迁: 0.1 %山景城: 0.1 %山景城: 0.1 %巴黎: 0.1 %巴黎: 0.1 %常州: 0.3 %常州: 0.3 %常德: 0.4 %常德: 0.4 %广州: 1.5 %广州: 1.5 %廊坊: 0.1 %廊坊: 0.1 %开封: 0.1 %开封: 0.1 %张家口: 1.8 %张家口: 1.8 %徐州: 0.5 %徐州: 0.5 %悉尼: 0.1 %悉尼: 0.1 %成都: 1.0 %成都: 1.0 %扬州: 0.2 %扬州: 0.2 %新加坡: 0.1 %新加坡: 0.1 %无锡: 0.2 %无锡: 0.2 %昆明: 1.5 %昆明: 1.5 %晋中: 0.4 %晋中: 0.4 %杭州: 1.3 %杭州: 1.3 %桂林: 0.4 %桂林: 0.4 %梅珀尔: 0.1 %梅珀尔: 0.1 %武汉: 1.7 %武汉: 1.7 %汕头: 0.2 %汕头: 0.2 %沈阳: 0.5 %沈阳: 0.5 %泰州: 0.1 %泰州: 0.1 %洛阳: 1.4 %洛阳: 1.4 %济南: 0.4 %济南: 0.4 %海得拉巴: 0.2 %海得拉巴: 0.2 %淄博: 0.2 %淄博: 0.2 %淮南: 0.1 %淮南: 0.1 %深圳: 0.8 %深圳: 0.8 %温尼伯: 0.1 %温尼伯: 0.1 %温州: 0.5 %温州: 0.5 %湘潭: 0.1 %湘潭: 0.1 %湛江: 0.1 %湛江: 0.1 %漯河: 0.4 %漯河: 0.4 %潍坊: 0.1 %潍坊: 0.1 %澳门: 0.1 %澳门: 0.1 %焦作: 0.2 %焦作: 0.2 %珠海: 0.1 %珠海: 0.1 %瓦尔多夫: 0.1 %瓦尔多夫: 0.1 %眉山: 0.2 %眉山: 0.2 %石家庄: 1.4 %石家庄: 1.4 %福州: 0.3 %福州: 0.3 %科泽科德: 0.1 %科泽科德: 0.1 %纽约: 0.2 %纽约: 0.2 %绍兴: 0.2 %绍兴: 0.2 %芒廷维尤: 21.0 %芒廷维尤: 21.0 %芝加哥: 1.6 %芝加哥: 1.6 %衡水: 0.3 %衡水: 0.3 %衡阳: 0.1 %衡阳: 0.1 %西双版纳: 0.1 %西双版纳: 0.1 %西宁: 8.8 %西宁: 8.8 %西安: 0.2 %西安: 0.2 %诺沃克: 0.2 %诺沃克: 0.2 %贝尔格莱德: 0.2 %贝尔格莱德: 0.2 %贵阳: 0.4 %贵阳: 0.4 %达拉斯: 0.1 %达拉斯: 0.1 %运城: 0.7 %运城: 0.7 %遵义: 0.1 %遵义: 0.1 %郑州: 1.2 %郑州: 1.2 %重庆: 1.2 %重庆: 1.2 %银川: 0.5 %银川: 0.5 %长春: 7.0 %长春: 7.0 %长沙: 1.2 %长沙: 1.2 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %青岛: 1.1 %青岛: 1.1 %香港: 0.2 %香港: 0.2 %其他其他ChinaFalls ChurchFremontSeattleTiruchi上海上饶临汾乌鲁木齐亚特兰大佛山兰州北京南京南宁南昌南通卡纳塔克厦门台州吉隆坡周口呼伦贝尔呼和浩特咸阳圣安东尼奥夏延大庆大连天津太原威海娄底孝感孟买安康宜春宿迁山景城巴黎常州常德广州廊坊开封张家口徐州悉尼成都扬州新加坡无锡昆明晋中杭州桂林梅珀尔武汉汕头沈阳泰州洛阳济南海得拉巴淄博淮南深圳温尼伯温州湘潭湛江漯河潍坊澳门焦作珠海瓦尔多夫眉山石家庄福州科泽科德纽约绍兴芒廷维尤芝加哥衡水衡阳西双版纳西宁西安诺沃克贝尔格莱德贵阳达拉斯运城遵义郑州重庆银川长春长沙阿姆斯特丹青岛香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(2)

    Article Metrics

    Article views (612) PDF downloads(132) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return