中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2型糖尿病胰腺癌裸鼠模型的建立及活体成像观察

许永宁 黄雪桓 唐芷盼 李若涵 秦雯

引用本文:
Citation:

2型糖尿病胰腺癌裸鼠模型的建立及活体成像观察

DOI: 10.12449/JCH240625
基金项目: 

国家自然科学基金资助项目 (81860508);

广西医疗卫生适宜技术开发与推广应用项目 (S2018040);

广西壮族自治区卫生和计划生育委员会自筹经费科研课题 (Z20180950)

伦理学声明: 本研究方案于2018年3月6日经由广西医科大学第一附属医院伦理委员审批,批号为2018-KY-国基-153,符合实验室动物管理与使用准则。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:许永宁负责实验操作、研究过程的实施、起草论文、论文框架、统计学分析及绘制图表;黄雪桓、唐芷盼及李若涵负责细胞培养、科研蜡块制备;秦雯负责课题设计、提供基金资助、拟定写作思路、论文修改和指导撰写文章并最后定稿。
详细信息
    通信作者:

    秦雯, fenglingcao1980@163.com (ORCID: 0009-0002-8282-7388)

Establishment and in vivo imaging observation of a nude mouse model of type 2 diabetes mellitus and pancreatic cancer

Research funding: 

National Natural Science Foundation of China (81860508);

Guangxi Medical and Health Appropriate Technology Development and Promotion Project (S2018040);

Guangxi Health and Family Planning Commission Self-raised Scientific Research Projects (Z20180950)

More Information
  • 摘要:   目的  建立可动态观察成瘤过程并进行体内研究的2型糖尿病(T2DM)胰腺癌裸鼠模型。  方法  首先,通过慢病毒载体GV260转染人胰腺癌细胞(PANC-1细胞)构建能稳定表达萤火虫荧光素酶的胰腺癌细胞株(PANC-1-Luc细胞)。然后,将36只SPF级裸鼠随机分为对照组(n=12,血糖正常的胰腺癌裸鼠)和模型组(n=24,T2DM胰腺癌裸鼠)。对照组:先给予繁殖饲料喂养,之后将PANC-1-Luc细胞异位种植于裸鼠皮下;模型组:先给予高脂饲料喂养联合腹腔注射1% STZ,之后将PANC-1-Luc细胞异位种植于裸鼠皮下。用荧光活体成像系统和人工测量法同步动态监测2组裸鼠胰腺癌生长情况,绘制肿瘤生长曲线、分析荧光值与肿瘤体积的关系。显微镜下观察裸鼠皮下肿瘤及胰岛,验证造模是否成功;同时,通过免疫组化检测肿瘤组织Ki-67的表达来分析高血糖对裸鼠胰腺癌生长的影响。正态分布计量资料组间比较采用成组t检验,非正态分布计量资料组间比较采用Mann-Whitney U检验。  结果  确定PANC-1细胞慢病毒载体稳定转染的最佳病毒滴度为5×107 TU/mL,用嘌呤霉素筛选的最佳浓度为20 μg/mL、最佳筛选时间为9天;PANC-1-Luc细胞的荧光值与细胞数量呈线性正相关,线性方程为y=42.56x-42 504(r=0.977,P=0.004)。T2DM裸鼠模型血糖值为23.05(19.25~26.40)mmol/L,且每只裸鼠的血糖均高于11.1 mmol/L,与对照组裸鼠血糖值[6.15(5.20~7.30)mmol/L]相比,差异有统计学意义(Z=-8.45,P<0.001)。与对照组相比,模型组胰腺组织内胰岛数量减少、体积减小、形状不规则、边界模糊,同时移植瘤病理学检查确认镜下为胰腺癌组织,可判定T2DM裸鼠胰腺癌模型造模成功。模型组皮下肿瘤大小与荧光值呈线性正相关,线性方程为y=232 348 691x-8 258 608(r=0.911,P=0.031);模型组移植瘤Ki-67免疫组化阳性率显著高于对照组[(50.333±7.808)% vs (15.917±4.055)%,t=13.55,P<0.001],说明模型组肿瘤增殖较快。  结论  本研究所构建的T2DM裸鼠胰腺癌模型可模拟T2DM背景下胰腺癌发生、发展的病理过程,动态观察高血糖对体内胰腺癌细胞生长的影响,从而为T2DM背景下胰腺癌发生、发展的体内研究提供新的实验载体。

     

  • 图  1  细胞系筛选实验(×180)

    注: a,第3天;b,第5天;c,第7天;d,第9天。

    Figure  1.  Cell line screening experiment (×180)

    图  2  细胞系筛选实验前后细胞形态对比(×180)

    注: a,未经筛选的细胞;b,经嘌呤霉素筛选后的细胞。

    Figure  2.  Comparison of cell morphology before and after cell line screening experiment (×180)

    图  3  慢病毒载体转染前后细胞形态对比(×180)

    注: a,PANC-1(转染前);b,(转染后)PANC-1-Luc。

    Figure  3.  Comparison of cell morphology before and after lentiviral vector transfection (×180)

    图  4  PANC-1-Luc的荧光值及其与细胞数量的关系

    注: a,实验组和对照组的荧光值比较;b,不同细胞数量PANC-1-Luc荧光值的比较;c,PANC-1-Luc荧光值跟细胞数量呈线性正相关。

    Figure  4.  Fluorescence values of PANC-1-Luc and its relationship with cell number

    图  5  模型组及对照组第5周皮下肿瘤的活体生物发光成像

    注: a,模型组;b,对照组。

    Figure  5.  Vivo bioluminescence imaging of subcutaneous tumors in the model group and the control group at week 5

    图  6  模型组及对照组裸鼠皮下肿瘤大小变化

    Figure  6.  Changes in the size of subcutaneous tumors in nude mice in the model group and the control group

    图  7  模型组及对照组裸鼠皮下肿瘤荧光值动态变化

    Figure  7.  Dynamic changes in subcutaneous tumor fluorescence values in the model group and the control group

    图  8  模型组裸鼠荧光值与肿瘤生长体积动态分析

    Figure  8.  Dynamic analysis of fluorescence values and tumor growth volume in the model group

    图  9  模型组裸鼠荧光值与肿瘤体积相关性分析

    Figure  9.  Correlation analysis between fluorescence values and tumor volume in the model group

    图  10  模型组和对照组裸鼠形成的皮下肿瘤肉眼观察

    注: a,模型组(部分示例);b,对照组(部分示例)。

    Figure  10.  Macroscopic observation of subcutaneous tumors formed in nude mice in the model group and the control group

    图  11  模型组裸鼠皮下肿瘤HE染色

    注: a,×40,白色箭头为胰腺癌形成皮下肿瘤,红色箭头为肌肉组织,黑色箭头为皮肤及皮脂腺;b,×400。

    Figure  11.  The histological observation of subcutaneous tumors in the model group with HE staining under a microscope

    图  12  对照组与模型组裸鼠胰岛组织HE染色(×200)

    注: a,对照组;b,模型组;箭头处为胰岛。

    Figure  12.  HE staining of pancreatic islet tissue in the control group and model group (×200)

    图  13  对照组与模型组裸鼠皮下肿瘤Ki-67免疫组化结果(×200)

    注: a,对照组;b,模型组。

    Figure  13.  Immunohistochemical results of subcutaneous tumor Ki-67 in the control group and model group (×200)

    表  1  模型组及对照组裸鼠皮下肿瘤大小变化(cm3

    Table  1.   Changes in subcutaneous tumor size of nude mice in the model group and the control group (cm3

    时间 对照组(n=12) 模型组(n=24) t P
    第1周 0.013±0.007 0.036±0.021 3.535 0.004
    第2周 0.020±0.012 0.046±0.022 3.490 0.002
    第3周 0.027±0.015 0.051±0.023 3.490 0.002
    第4周 0.035±0.019 0.061±0.034 2.285 0.035
    第5周 0.039±0.019 0.070±0.037 2.549 0.018
    下载: 导出CSV

    表  2  模型组及对照组裸鼠皮下肿瘤荧光值变化(p⋅s-1⋅cm-2⋅sr-1

    Table  2.   Changes in subcutaneous tumor values of nude mice in the model group and the control group (p·s-1·cm-2·sr-1

    时间 对照组(n=12) 模型组(n=24) t P
    第1周 6 460.83±4 200.33 985 416.67±97 565.32 34.726 <0.001
    第2周 28 169.17±20 112.81 2 029 250.00±612 538.25 11.311 <0.001
    第3周 131 601.67±101 868.71 3 251 666.67±981 546.40 10.953 <0.001
    第4周 174 560.00±133 203.77 3 897 500.00±1 248 631.07 10.270 <0.001
    第5周 359 734.17±236 685.20 9 650 833.33±4 384 569.45 7.330 <0.001
    下载: 导出CSV
  • [1] SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71( 3): 209- 249. DOI: 10.3322/caac.21660.
    [2] XIE ZB, GAO Y, HO C, et al. Exosome-delivered CD44v6/C1QBP complex drives pancreatic cancer liver metastasis by promoting fibrotic liver microenvironment[J]. Gut, 2022, 71( 3): 568- 579. DOI: 10.1136/gutjnl-2020-323014.
    [3] BOSETTI C, ROSATO V, LI D, et al. Diabetes, antidiabetic medications, and pancreatic cancer risk: An analysis from the International Pancreatic Cancer Case-Control Consortium[J]. Ann Oncol, 2014, 25( 10): 2065- 2072. DOI: 10.1093/annonc/mdu276.
    [4] LI WJ, ZHANG XH, SANG H, et al. Effects of hyperglycemia on the progression of tumor diseases[J]. J Exp Clin Cancer Res, 2019, 38( 1): 327. DOI: 10.1186/s13046-019-1309-6.
    [5] NOH Y, JEON SM, SHIN S. Association between glucose-lowering treatment and cancer metastasis among patients with preexisting type 2 diabetes and incident malignancy[J]. Int J Cancer, 2019, 144( 7): 1530- 1539. DOI: 10.1002/ijc.31870.
    [6] OVERBEEK JA, van HERK-SUKEL MPP, VISSERS PAJ, et al. Type 2 diabetes, but not insulin(analog) treatment, is associated with more advanced stages of breast cancer: A national linkage of cancer and pharmacy registries[J]. Diabetes Care, 2019, 42( 3): 434- 442. DOI: 10.2337/dc18-2146.
    [7] POPOVIC K, SMOLOVIĆ B, MARTINOVIĆ M, et al. The relationship between diabetes mellitus and pancreatic cancer-diabetes mellitus as a red flag for pancreatic cancer[J]. Cancer Epidemiol Biomarkers Prev, 2023, 32( 3): 298- 305. DOI: 10.1158/1055-9965.EPI-22-0951.
    [8] LI JH, MA JG, HAN L, et al. Hyperglycemic tumor microenvironment induces perineural invasion in pancreatic cancer[J]. Cancer Biol Ther, 2015, 16( 6): 912- 921. DOI: 10.1080/15384047.2015.1040952.
    [9] LI W, ZHANG L, CHEN X, et al. Hyperglycemia promotes the epithelial-mesenchymal transition of pancreatic cancer via hydrogen peroxide[J]. Oxid Med Cell Longev, 2016, 2016: 5190314. DOI: 10.1155/2016/5190314.
    [10] CHENG L, QIN T, MA JG, et al. Hypoxia-inducible factor-1α mediates hyperglycemia-induced pancreatic cancer glycolysis[J]. Anticancer Agents Med Chem, 2019, 19( 12): 1503- 1512. DOI: 10.2174/1871520619666190626120359.
    [11] ZHANG L, ZHANG WN, ZHANG X, et al. High-glucose microenvironment promotes perineural invasion of pancreatic cancer via activation of hypoxia inducible factor 1α[J]. Oncol Rep, 2022, 47( 4): 64. DOI: 10.3892/or.2022.8275.
    [12] LI W, LIU H, QIAN WK, et al. Hyperglycemia aggravates microenvironment hypoxia and promotes the metastatic ability of pancreatic cancer[J]. Comput Struct Biotechnol J, 2018, 16: 479- 487. DOI: 10.1016/j.csbj.2018.10.006.
    [13] DEL PUERTO-NEVADO L, MINGUEZ P, CORTON M, et al. Molecular evidence of field cancerization initiated by diabetes in colon cancer patients[J]. Mol Oncol, 2019, 13( 4): 857- 872. DOI: 10.1002/1878-0261.12438.
    [14] KANG J, LI CQ, GAO XH, et al. Metformin inhibits tumor growth and affects intestinal flora in diabetic tumor-bearing mice[J]. Eur J Pharmacol, 2021, 912: 174605. DOI: 10.1016/j.ejphar.2021.174605.
    [15] JIANG YG, FENG CX, SHI YH, et al. Eugenol improves high-fat diet/streptomycin-induced type 2 diabetes mellitus(T2DM) mice muscle dysfunction by alleviating inflammation and increasing muscle glucose uptake[J]. Front Nutr, 2022, 9: 1039753. DOI: 10.3389/fnut.2022.1039753.
    [16] CUI XN, FENG J, WEI TJ, et al. Pancreatic alpha cell glucagon-liver FGF21 axis regulates beta cell regeneration in a mouse model of type 2 diabetes[J]. Diabetologia, 2023, 66( 3): 535- 550. DOI: 10.1007/s00125-022-05822-2.
    [17] ELSNER M, GULDBAKKE B, TIEDGE M, et al. Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin[J]. Diabetologia, 2000, 43( 12): 1528- 1533. DOI: 10.1007/s001250051564.
    [18] HE CX, WANG K, XIA J, et al. Natural exosomes-like nanoparticles in mung bean sprouts possesses anti-diabetic effects via activation of PI3K/Akt/GLUT4/GSK-3β signaling pathway[J]. J Nanobiotechnology, 2023, 21( 1): 349. DOI: 10.1186/s12951-023-02120-w.
    [19] MCNEILLY AD, GALLAGHER JR, EVANS ML, et al. Chronic hyperglycaemia increases the vulnerability of the hippocampus to oxidative damage induced during post-hypoglycaemic hyperglycaemia in a mouse model of chemically induced type 1 diabetes[J]. Diabetologia, 2023, 66( 7): 1340- 1352. DOI: 10.1007/s00125-023-05907-6.
    [20] ENTENBERG D, OKTAY MH, CONDEELIS JS. Intravital imaging to study cancer progression and metastasis[J]. Nat Rev Cancer, 2023, 23( 1): 25- 42. DOI: 10.1038/s41568-022-00527-5.
    [21] SYED AJ, ANDERSON JC. Applications of bioluminescence in biotechnology and beyond[J]. Chem Soc Rev, 2021, 50( 9): 5668- 5705. DOI: 10.1039/d0cs01492c.
    [22] LIU S, SU YC, LIN MZ, et al. Brightening up biology: Advances in luciferase systems for invivo imaging[J]. ACS Chem Biol, 2021, 16( 12): 2707- 2718. DOI: 10.1021/acschembio.1c00549.
    [23] YAN YC, SHI PF, SONG WL, et al. Chemiluminescence and bioluminescence imaging for biosensing and therapy: invivo and invivo perspectives[J]. Theranostics, 2019, 9( 14): 4047- 4065. DOI: 10.7150/thno.33228.
    [24] MERLE N, ELMSHÄUSER S, STRASSHEIMER F, et al. Monitoring autochthonous lung tumors induced by somatic CRISPR gene editing in mice using a secreted luciferase[J]. Mol Cancer, 2022, 21( 1): 191. DOI: 10.1186/s12943-022-01661-2.
    [25] LI SF, RUAN ZY, ZHANG H, et al. Recent achievements of bioluminescence imaging based on firefly luciferin-luciferase system[J]. Eur J Med Chem, 2021, 211: 113111. DOI: 10.1016/j.ejmech.2020.113111.
    [26] DEROOSE CM, REUMERS V, GIJSBERS R, et al. Noninvasive monitoring of long-term lentiviral vector-mediated gene expression in rodent brain with bioluminescence imaging[J]. Mol Ther, 2006, 14( 3): 423- 431. DOI: 10.1016/j.ymthe.2006.05.007.
    [27] TAO ZN, LI T, MA HW, et al. Autophagy suppresses self-renewal ability and tumorigenicity of glioma-initiating cells and promotes Notch1 degradation[J]. Cell Death Dis, 2018, 9( 11): 1063. DOI: 10.1038/s41419-018-0957-3.
    [28] YOU K, WANG DJ, WANG L, et al. Effect of NOR1 gene knockout on nude mice xenograft tumor of human liver cancer and its mechanism of action[J]. J Clin Hepatol, 2020, 36( 2): 381- 386. DOI: 10.3969/j.issn.1001-5256.2020.02.030.

    游焜, 王大军, 王亮, 等. 敲除NOR1基因对人肝癌裸鼠移植瘤的影响及作用机制[J]. 临床肝胆病杂志, 2020, 36( 2): 381- 386. DOI: 10.3969/j.issn.1001-5256.2020.02.030.
    [29] LI XY, YANG YF, CHEN Y, et al. Expression and significance of response gene to complement 32 in liver regeneration after partial hepatectomy in mice[J]. J Clin Hepatol, 2023, 39( 10): 2396- 2405. DOI: 10.3969/j.issn.1001-5256.2023.10.018.

    李兴元, 杨艳芳, 陈琰, 等. 补体应答基因32在小鼠部分肝切除后肝再生过程中的表达及意义[J]. 临床肝胆病杂志, 2023, 39( 10): 2396- 2405. DOI: 10.3969/j.issn.1001-5256.2023.10.018.
    [30] JANG SJ, KANG JH, KIM KI, et al. Application of bioluminescence imaging to therapeutic intervention of herpes simplex virus type I-Thymidine kinase/ganciclovir in glioma[J]. Cancer Lett, 2010, 297( 1): 84- 90. DOI: 10.1016/j.canlet.2010.04.028.
    [31] WANG XL, ROSOL M, GE SD, et al. Dynamic tracking of human hematopoietic stem cell engraftment using invivo bioluminescence imaging[J]. Blood, 2003, 102( 10): 3478- 3482. DOI: 10.1182/blood-2003-05-1432.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  287
  • HTML全文浏览量:  99
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-17
  • 录用日期:  2023-12-26
  • 出版日期:  2024-06-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回