假设检验是反证法的思想,依据样本统计量作出的统计推断,其推断结论并非绝对正确,结论有时也可能有错误,错误分为两类。
第一类错误(typeⅠerror),Ⅰ型错误,拒绝了实际上成立的H0,,即错误地判为有差别,这种弃真的错误称为Ⅰ型错误。其概率大小用即检验水准用α表示。α可取单尾也可取双尾。假设检验时可根据研究目的来确定其大小,一般取0.05,当拒绝H0时则理论上理论100次检验中平均有5次发生这样的错误.。
第二类错误(typeⅡ error)。Ⅱ型错误,接受了实际上不成立的H0 ,也就是错误地判为无差别,这类取伪的错误称为第二类错误。第二类错误的概率用β表示,β的大小很难确切估计。当样本例数固定时,α愈小,β愈大;反之,α愈大,β愈小。因而可通过选定α控制β大小。要同时减小α和β,唯有增加样本例数。统计上将1-β称为检验效能或把握度(power of a test),即两个总体确有差别存在,而以α为检验水准,假设检验能发现它们有差别的能力。实际工作中应权衡两类错误中哪一个重要以选择检验水准的大小。