中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

统计方法选用手册

阅读次数:1874
  • 分享到:

用微信扫码二维码

分享至好友和朋友圈

发布日期:2015-09-11
来源:医学生

一、 两组或多组计量资料的比较

1.两组资料:

1)大样本资料或服从正态分布的小样本资料:(1)若方差齐性,则作成组t检验(2)若方差不齐,则作t’检验或用成组的Wilcoxon秩和检验

2)小样本偏态分布资料,则用成组的Wilcoxon秩和检验

2.多组资料:1)若大样本资料或服从正态分布,并且方差齐性,则作完全随机的方差分析。如果方差分析的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:LSD检验,Bonferroni检验等)进行两两比较。

2)如果小样本的偏态分布资料或方差不齐,则作Kruskal Wallis的统计检验。如果Kruskal Wallis的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:用成组的Wilcoxon秩和检验,但用Bonferroni方法校正P值等)进行两两比较。

二、 分类资料的统计分析

1.单样本资料与总体比较

1)二分类资料:(1)小样本时:用二项分布进行确切概率法检验;(2)大样本时:用U检验。

2)多分类资料:用Pearson  c2检验(又称拟合优度检验)。

2. 四格表资料

1)n>40并且所以理论数大于5,则用 Pearson c2检验

2)n>40并且所以理论数大于1并且至少存在一个理论数<5,则用校正 c2或用Fisher’s 确切概率法检验

3)n<40或存在理论数<1,则用Fisher’s 检验

3. 2×C表资料的统计分析

1)列变量为效应指标,并且为有序多分类变量,行变量为分组变量,则行评分的CMH c2或成组的Wilcoxon秩和检验

2)列变量为效应指标并且为二分类,列变量为有序多分类变量,则用趋势c2检验

3)行变量和列变量均为无序分类变量:

(1)n>40并且理论数小于5的格子数<行列表中格子总数的25%,则用Pearson c2(2)n<40或理论数小于5的格子数>行列表中格子总数的25%,则用Fisher’s 确切概率法检验

4. R×C表资料的统计分析

1)列变量为效应指标,并且为有序多分类变量,行变量为分组变量,则CMH c2或Kruskal Wallis的秩和检验

2)列变量为效应指标,并且为无序多分类变量,行变量为有序多分类变量,作none zero correlation analysis的CMH c2

3)列变量和行变量均为有序多分类变量,可以作Spearman相关分析

4)列变量和行变量均为无序多分类变量:

(1)n>40并且理论数小于5的格子数<行列表中格子总数的25%,则用pearson>行列表中格子总数的25%,则用Fisher’s 确切概率法检验

三、 Poisson分布资料

1.单样本资料与总体比较:

1)观察值较小时:用确切概率法进行检验。

2)观察值较大时:用正态近似的U检验。

2.两个样本比较:用正态近似的U检验

配对设计或随机区组设计

四、 两个变量之间的关联性分析

1.两个变量均为连续型变量:

1)小样本并且两个变量服从双正态分布,则用Pearson相关系数做统计分析

2)大样本或两个变量不服从双正态分布,则用Spearman相关系数进行统计分析

2.两个变量均为有序分类变量,可以用Spearman相关系数进行统计分析

3.一个变量为有序分类变量,另一个变量为连续型变量,可以用Spearman相关系数进行统计分析

五、 回归分析

1.直线回归:如果回归分析中的残差服从正态分布(大样本时无需正态性),残差与自变量无趋势变化,则直线回归(单个自变量的线性回归,称为简单回归),否则应作适当的变换,使其满足上述条件。

2.多重线性回归:应变量(Y)为连续型变量(即计量资料),自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。如果回归分析中的残差服从正态分布(大样本时无需正态性),残差与自变量无趋势变化,可以作多重线性回归。

1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

3.二分类的Logistic回归:应变量为二分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。

1)非配对的情况:用非条件Logistic回归:

  (1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

  (2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

2)配对的情况:用条件Logistic回归:

  (1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

  (2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

4.有序多分类有序的Logistic回归:应变量为有序多分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。

1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

5.无序多分类有序的Logistic回归:应变量为无序多分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。

1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

六、 生存分析资:要求资料记录结局和结局发生的时间(如;死亡和死亡发生的时间)

1.用Kaplan-Meier方法估计生存曲线

2.大样本时,可以寿命表方法估计

3.单因素可以用Log-rank比较两条或多条生存曲线

4.多个因素时,可以作多重的Cox回归

1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

 

  • 分享到:

用微信扫码二维码

分享至好友和朋友圈

阅读次数:1874
  • 1 病毒性肝炎
    • 1.1 乙型肝炎
    • 1.2 丙型肝炎
    • 1.3 甲型肝炎
    • 1.4 戊型肝炎
    • 1.5 其他肝炎
  • 2 肝硬化及并发症
  • 3 酒精性肝病
  • 4 非酒精性脂肪性肝病
  • 5 肝衰竭/肝性脑病/人工肝
  • 6 肝肿瘤
  • 7 自身免疫性肝病
  • 8 药物性肝病
  • 9 肝移植
  • 10 其他肝病
    • 10.1 遗传及代谢性肝病
    • 10.2 胆汁淤积性肝病
    • 10.3 肝脏血管病
  • 11 一般肝病/肝脏检查
  • 12 胆道疾病
  • 13 胰腺疾病
  • 14 全身疾病与肝病/内镜
  • 15 肝胆胰疾病相关评分系统汇总