KCNJ11 rs5210位点多态性与非酒精性脂肪性肝病及冠心病的遗传易感性分析
DOI: 10.3969/j.issn.1001-5256.2021.06.027
KCNJ11 rs5210 polymorphism and genetic susceptibility to nonalcoholic fatty liver disease and coronary artery disease
-
摘要:
目的 在青岛地区汉族人群中,研究内向整流钾通道蛋白J亚单位11号成员(KCNJ11)基因rs5210位点多态性与非酒精性脂肪性肝病(NAFLD)及冠心病(CAD)的相关性。 方法 随机纳入2018年12月—2019年9月就诊于青岛市市立医院的246例NAFLD患者为NAFLD组,201例CAD患者为CAD组,116例NAFLD合并CAD患者为合并组,342例健康对照人群为对照组。采集空腹静脉血进行生化检测。提取全血基因组DNA,采用PCR的方法进行KCNJ11 rs5210基因型测定。应用χ2检验分析KCNJ11 rs5210基因频率分布是否符合Hardy-Weinberg平衡法则,以确定检验样本是否具有群体代表性。应用χ2检验分析各组之间性别、基因型及等位基因频率的差异性。符合正态分布的计量资料多组间比较采用单因素方差分析,进一步两两比较采用LSD-t检验;不符合正态分布计量资料多组间比较采用Kruskal-Wallis H检验,两两比较采用Bonferroni法。应用非条件logistic回归模型计算比值比(OR)及95%可信区间。 结果 经测序发现KCNJ11 rs5210具有AA、GA、GG 3种基因型。对照组、NAFLD组、CAD组及合并组之间进行比较rs5210位点等位基因频率和基因型分布均无统计学差异(P值均>0.05)。经校正年龄、性别、BMI,差异亦无统计学意义(P值均>0.05)。全部受试人群中,携带AA基因型受试者ALP水平高于GA基因型(P=0.048);在NAFLD组中,与携带AA基因型受试者相比,GA基因型携带者具有更高的BMI、TBil水平(P值分别为0.042、0.002)。非条件logistic回归分析表明,BMI升高与NAFLD患病风险相关(OR=1.35,P<0.01),HDL降低可提示NAFLD患病风险增加(OR=0.33,P<0.01);FPG升高、HDL降低可提示CAD(OR=1.51,P<0.01;OR=0.11,P<0.01)、NAFLD+CAD(OR=1.46,P<0.01;OR=0.06,P<0.01)患病风险增加。 结论 青岛地区汉族人群中KCNJ11 rs5210多态性与NAFLD及CAD的发病风险无明显相关性。 Abstract:Objective To investigate the association of KCNJ11 rs5210 single nucleotide polymorphism with nonalcoholic fatty liver disease (NAFLD) and coronary artery disease (CAD) in the Chinese Han population in Qingdao, China. Methods A total of 246 patients with NAFLD who attended Qingdao Municipal Hospital from December 2018 to September 2019 were enrolled as NAFLD group, 201 patients with CAD were enrolled as CAD group, and 116 patients with NAFLD and CAD were enrolled as NAFLD+CAD group; 342 healthy individuals were enrolled as control group. Fasting venous blood samples were collected for biochemical analysis. Whole blood genomic DNA was extracted, and PCR was used to determine KCNJ11 rs5210 genotype. The chi-square test was used to analyze whether the distribution of KCNJ11 rs5210 gene frequencies met the Hardy-Weinberg equilibrium, in order to determine whether the tested samples could represent the population. The chi-square test was used to analyze the differences in sex and genotype/allele frequency between groups. A one-way analysis of variance was used for comparison of normally distributed continuous data between multiple groups, and the least significant difference t-test was used for further comparison between two groups; the Kruskal-Wallis H test was used for comparison of non-normally distributed continuous data between multiple groups, and the Bonferroni method was used for further comparison between two groups. The unconditional logistic regression model was used to calculate odds ratio (OR) and 95% confidence interval. Results Three genotypes (AA, GA, and GG) of KCNJ11 rs5210 were found by gene sequencing. There were no significant differences in rs5210 allele frequency and genotype distribution between the control group, the NAFLD group, the CAD group, and the NAFLD+CAD group (all P > 0.05), and there were still no significant differences after adjustment for sex, age, and body mass index (BMI) (all P > 0.05). For all subjects, the subjects with AA genotype had a higher level of alkaline phosphatase than those with GA genotype (P=0.048); in the NAFLD group, the patients with GA genotype had significantly higher BMI and total bilirubin than those with AA genotype (P=0.042 and 0.002). The unconditional logistic regression analysis showed that elevated BMI was associated with the risk of NAFLD (OR=1.35, P < 0.01), while decreased high-density lipoprotein (HDL) might indicate an increase in the risk of NAFLD (OR=0.33, P < 0.01); elevated fasting plasma glucose and decreased HDL might indicate an increase in the risk of CAD (OR=1.51 and 0.11, both P < 0.01) and NAFLD with CAD (OR=1.46 and 0.06, both P < 0.01). Conclusion There is no significant association between KCNJ11 rs5210 polymorphism and the risk of NAFLD and CAD in the Chinese Han population in Qingdao. -
Key words:
- Non-Alcoholic Fatty Liver Disease /
- Coronary Disease /
- Genotype
-
表 1 4组之间一般临床资料及相关实验室指标比较
指标 对照组(n=342) NAFLD组(n=246) 合并组(n=116) CAD组(n=201) 统计值 P值 年龄(岁) 45.00(20.00~75.00) 45.00(24.00~73.00) 62.00(32.00~74.00)1)2) 67.00(30.00~75.00)1)2) H=325.83 <0.01 女/男(例) 150/192 109/137 36/801)2) 74/127 χ2=8.48 0.04 BMI(kg/m2) 23.49±3.08 26.51±2.901) 25.19±2.581)2) 24.60±3.271)2) F=130.17 <0.01 FPG(mmol/L) 4.59(2.92~16.72) 4.77(2.90~16.10)1) 5.42(3.04~16.21)1)2) 5.22(1.81~18.33)1)2) H=100.76 <0.01 TC(mmol/L) 5.20(0.84~18.50) 5.27(2.60~13.90) 4.31(1.64~8.49)1)2) 4.48(2.06~12.80)1)2) H=63.95 <0.01 TG(mmol/L) 1.10(0.33~8.33) 1.51(0.53~32.34)1) 1.46(0.50~40.38)1) 1.38(0.05~6.09)1) H=61.48 <0.01 HDL(mmol/L) 1.34(0.58~3.60) 1.18(0.66~2.58)1) 1.03(0.62~2.28)1)2) 1.01(0.35~6.90)1)2) H=181.92 <0.01 LDL(mmol/L) 3.08(1.65~5.55) 3.31(1.20~15.37) 2.64(0.70~5.20)1)2) 2.66(0.87~9.82)1)2) H=67.77 <0.01 ALT(U/L) 18.00(6.00~287.17) 23.80(5.63~325.69)1) 22.25(7.00~153.00)1) 20.97(1.20~305.02)1)2) H=52.53 <0.01 AST(U/L) 20.30(10.00~524.75) 22.28(1.81~87.85)1) 22.42(0.74~438.66)1) 22.45(10.13~381.84)1) H=22.24 <0.01 GGT(U/L) 20.00(7.00~374.50) 30.52(10.23~1043.56)1) 26.44(9.05~902.84)1) 27.11(9.47~171.78)1) H=80.61 <0.01 ALP(U/L) 66.16(15.00~182.29) 76.11(1.60~499.84)1) 82.41(44.45~509.41)1)2) 83.14(28.72~234.74)1) H=93.97 <0.01 TBil(μmol/L) 13.47(5.60~55.50) 11.90(5.00~40.80)1) 13.47(5.50~52.70) 13.30(2.50~63.90) H=12.12 <0.01 注:与对照组相比,1)P<0.05;与NAFLD组相比,2)P<0.05。 表 2 KCNJ11 rs5210位点等位基因和基因型频率分布
项目 对照组(n=342) NAFLD组(n=246) 合并组(n=116) CAD组(n=201) χ2值 P值 基因型[例(%)] 4.63 0.59 AA 84(24.6) 59(24.0) 25(21.6) 55(27.4) GA 173(50.6) 113(45.9) 63(54.3) 98(48.8) GG 85(24.9) 74(30.1) 28(24.1) 48(23.9) 等位基因[例(%)] 2.16 0.54 A 341(49.9) 231(47.0) 113(48.7) 208(51.7) G 343(50.1) 261(53.0) 119(51.3) 194(48.3) 隐性模型[例(%)] 3.04 0.39 GA+AA 257(75.1) 172(69.9) 88(75.9) 153(76.1) GG 85(24.9) 74(30.1) 28(24.1) 48(23.9) 显性模型[例(%)] 1.46 0.69 AA 84(24.6) 59(24.0) 25(21.6) 55(27.4) GG+GA 258(75.4) 187(76.0) 91(78.4) 146(72.6) 表 3 全部受试人群KCNJ11 rs5210位点多态性不同基因型之间各指标比较
指标 AA(n=223) GA(n=447) GG(n=235) 统计值 P值 年龄(岁) 55.00(20.00~75.00) 54.00(23.00~75.00) 53.00(21.00~75.00) H=0.99 0.61 女/男(例) 88/135 173/274 108/127 χ2=3.57 0.17 BMI(kg/m2) 24.65(16.44~32.87) 24.81(15.24~38.54) 24.66(17.13~34.35) H=1.86 0.40 FPG(mmol/L) 4.81(2.90~17.60) 4.84(2.90~18.30) 4.89(1.80~15.60) H=0.33 0.85 TC(mmol/L) 5.07(0.94~13.90) 5.03(0.84~18.50) 4.94(0.99~9.01) H=0.72 0.70 TG(mmol/L) 1.27(0.41~8.33) 1.33(0.05~40.38) 1.32(0.33~10.32) H=1.52 0.47 HDL(mmol/L) 1.18(0.54~3.60) 1.16(0.35~6.90) 1.16(0.40~3.49) H=0.44 0.80 LDL(mmol/L) 3.12(0.87~8.37) 3.04(1.20~15.37) 2.97(0.74~11.37) H=1.34 0.51 ALT(U/L) 20.21(5.70~325.69) 21.63(1.20~305.02) 19.18(6.00~156.66) H=5.05 0.08 AST(U/L) 21.35(1.81~381.84) 21.45(0.80~524.75) 20.83(0.74~427.83) H=2.91 0.23 GGT(U/L) 24.40(7.52~610.35) 25.66(7.00~902.84) 24.69(8.00~1043.56) H=1.03 0.60 ALP(U/L) 76.34(30.00~327.90) 73.51(15.00~509.41)1) 74.07(1.60~499.84) H=6.23 0.04 TBil(μmol/L) 13.22(3.00~64.00) 13.41(3.00~55.00) 13.22(6.00~53.00) H=1.54 0.46 注:与AA相比,1)P<0.05。 表 4 NAFLD组KCNJ11 rs5210位点多态性不同基因型之间各指标比较
指标 AA(n=59) GA(n=113) GG(n=74) 统计值 P值 年龄(岁) 47.00(24.00~72.00) 45.00(25.00~73.00) 46.00(28.00~72.00) H=3.77 0.15 女/男(例) 30/29 47/66 32/42 χ2=1.39 0.50 BMI(kg/m2) 25.39(20.20~32.87) 26.40(20.06~34.72)1) 26.06(20.20~34.35) H=6.39 0.04 FPG(mmol/L) 4.81(3.27~16.11) 4.66(2.88~13.20) 4.89(3.55~15.62) H=0.98 0.61 TC(mmol/L) 5.42(3.12~13.90) 5.25(2.60~8.77) 5.21(3.11~9.01) H=1.19 0.55 TG(mmol/L) 1.64(0.53~6.07) 1.51(0.62~32.34) 1.53(0.62~10.32) H=0.18 0.92 HDL(mmol/L) 1.21(0.70~2.13) 1.16(0.72~2.58) 1.13(0.66~1.93) H=3.57 0.17 LDL(mmol/L) 3.35(1.74~8.37) 3.32(1.20~15.37) 3.30(1.82~11.37) H=0.54 0.76 ALT(U/L) 22.76(11.51~325.69) 26.86(5.63~277.92) 22.80(10.31~111.54) H=1.70 0.43 AST(U/L) 22.71(1.81~87.85) 22.06(12.02~68.91) 21.83(11.62~55.35) H=0.19 0.91 GGT(U/L) 27.74(14.37~610.35) 33.01(10.23~165.61) 29.14(10.70~1043.56) H=2.31 0.32 ALP(U/L) 82.35(41.61~327.90) 73.02(41.33~163.10) 77.50(1.60~499.84) H=5.82 0.05 TBil(μmol/L) 11.00(5.00~33.10) 13.10(6.50~40.80) 11.95(5.90~23.90) H=11.62 0.003 注:与AA相比,1)P<0.05。 表 5 NAFLD、CAD及NAFLD+CAD危险因素的logistic回归分析结果
指标 NAFLD CAD NAFLD+CAD OR 95%CI P值 OR 95%CI P值 OR 95%CI P值 BMI 1.35 1.25~1.45 <0.01 1.05 0.98~1.12 0.18 1.08 0.99~1.18 0.10 FPG 1.08 0.94~1.24 0.30 1.51 1.29~1.76 <0.01 1.46 1.20~1.78 <0.01 TC 1.02 0.87~1.18 0.85 0.91 0.75~1.10 0.33 1.02 0.84~1.25 0.82 TG 1.07 0.92~1.24 0.36 0.94 0.75~1.17 0.58 1.11 0.91~1.35 0.32 HDL 0.33 0.16~0.71 <0.01 0.11 0.05~0.26 <0.01 0.06 0.02~0.18 <0.01 LDL 1.20 0.98~1.46 0.07 0.69 0.50~0.95 0.02 0.61 0.40~0.92 0.02 rs 5210 G等位基因携带 0.87 0.57~1.35 0.55 0.97 0.61~1.54 0.90 1.07 0.60~1.92 0.82 -
[1] National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association; Fatty Liver Expert Committee, Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease: A 2018 update[J]. J Clin Hepatol, 2018, 34(5) : 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 临床肝胆病杂志, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007. [2] LIN SC, FENG G, LIU JL, et al. From nonalcoholic fatty liver disease to metabolic fatty liver disease: An analysis based on disease heterogeneity[J]. J Clin Hepatol, 2020, 36(11): 2597-2600. DOI: 10.3969/j.issn.1001-5256.2020.11.045.林思岑, 冯巩, 刘军林, 等. 从非酒精性脂肪性肝病到代谢性脂肪性肝病—基于疾病异质性角度的分析[J]. 临床肝胆病杂志, 2020, 36(11): 2597-2600. DOI: 10.3969/j.issn.1001-5256.2020.11.045. [3] KHERA AV, KATHIRESAN S. Genetics of coronary artery disease: Discovery, biology and clinical translation[J]. Nat Rev Genet, 2017, 18(6): 331-344. DOI: 10.1038/nrg.2016.160. [4] PYXARAS SA, WIJNS W, REIBER J, et al. Invasive assessment of coronary artery disease[J]. J Nucl Cardiol, 2018, 25(3): 860-871. DOI: 10.1007/s12350-017-1050-5. [5] LABAZI H, TRASK AJ. Coronary microvascular disease as an early culprit in the pathophysiology of diabetes and metabolic syndrome[J]. Pharmacol Res, 2017, 123: 114-121. DOI: 10.1016/j.phrs.2017.07.004. [6] MUSSO G, GAMBINO R, CASSADER M, et al. Meta-analysis: Natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity[J]. Ann Med, 2011, 43(8): 617-649. DOI: 10.3109/07853890.2010.518623. [7] ANSTEE QM, TARGHER G, DAY CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(6): 330-344. DOI: 10.1038/nrgastro.2013.41. [8] YOUNOSSI Z, ANSTEE QM, MARIETTI M, et al. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 11-20. DOI: 10.1038/nrgastro.2017.109. [9] VALENTI L, AL-SERRI A, DALY AK, et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease[J]. Hepatology, 2010, 51(4): 1209-1217. DOI: 10.1002/hep.23622. [10] ANSTEE QM, DAY CP. The genetics of nonalcoholic fatty liver disease: Spotlight on PNPLA3 and TM6SF2[J]. Semin Liver Dis, 2015, 35(3): 270-290. DOI: 10.1055/s-0035-1562947. [11] KOSTER JC, PERMUTT MA, NICHOLS CG. Diabetes and insulin secretion: The ATP-sensitive K+ channel (K ATP) connection[J]. Diabetes, 2005, 54(11): 3065-3072. DOI: 10.2337/diabetes.54.11.3065. [12] ABDELHAMID I, LASRAM K, MEILOUD G, et al. E23K variant in KCNJ11 gene is associated with susceptibility to type 2 diabetes in the Mauritanian population[J]. Prim Care Diabetes, 2014, 8(2): 171-175. DOI: 10.1016/j.pcd.2013.10.006. [13] QIU L, NA R, XU R, et al. Quantitative assessment of the effect of KCNJ11 gene polymorphism on the risk of type 2 diabetes[J]. PLoS One, 2014, 9(4): e93961. DOI: 10.1371/journal.pone.0093961. [14] SHIMOMURA K. The K(ATP) channel and neonatal diabetes[J]. Endocr J, 2009, 56(2): 165-175. DOI: 10.1507/endocrj.k08e-160. [15] BONNEFOND A, PHILIPPE J, DURAND E, et al. Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene[J]. PLoS One, 2012, 7(6): e37423. DOI: 10.1371/journal.pone.0037423. [16] MARTHINET E, BLOC A, OKA Y, et al. Severe congenital hyperinsulinism caused by a mutation in the Kir6.2 subunit of the adenosine triphosphate-sensitive potassium channel impairing trafficking and function[J]. J Clin Endocrinol Metab, 2005, 90(9): 5401-5406. DOI: 10.1210/jc.2005-0202. [17] FEDELE F, MANCONE M, CHILIAN WM, et al. Role of genetic polymorphisms of ion channels in the pathophysiology of coronary microvascular dysfunction and ischemic heart disease[J]. Basic Res Cardiol, 2013, 108(6): 387. DOI: 10.1007/s00395-013-0387-4. [18] CENSIN JC, PETERS S, BOVIJN J, et al. Causal relationships between obesity and the leading causes of death in women and men[J]. PLoS Genet, 2019, 15(10): e1008405. DOI: 10.1371/journal.pgen.1008405. [19] BYRNE CD, TARGHER G. NAFLD: A multisystem disease[J]. J Hepatol, 2015, 62(1 Suppl): s47-s64. DOI: 10.1016/j.jhep.2014.12.012. [20] GAGGINI M, MORELLI M, BUZZIGOLI E, et al. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease[J]. Nutrients, 2013, 5(5): 1544-1560. DOI: 10.3390/nu5051544. [21] National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association. Guidelines of diagnosis and treatment for nonalcoholic fatty liver disease: A 2010 update[J]. J Clin Hepatol, 2010, 26(2): 120-124. http://lcgdbzz.org/cn/article/doi/1001-5256%20(2010)%2002-0120-05中华医学会肝病学分会脂肪肝和酒精性肝病学组. 非酒精性脂肪性肝病诊疗指南(2010年修订版)[J]. 临床肝胆病杂志, 2010, 26(2): 120-124. http://lcgdbzz.org/cn/article/doi/1001-5256%20(2010)%2002-0120-05 [22] HAO P. The Study of single nucleotide polymorphisms(SNPS) of KCNJ11 gene associated with type 2 diabetes of Chinese Koreans in Yanbian area[D]. Yanji: Yanbian University, 2012.郝萍. 延边地区朝鲜族KCNJ11基因单核苷酸多态性与2型糖尿病的相关性研究[D]. 延吉: 延边大学, 2012. [23] KHAN IA, VATTAM KK, JAHAN P, et al. Correlation between KCNQ1 and KCNJ11 gene polymorphisms and type 2 and post-transplant diabetes mellitus in the Asian Indian population[J]. Genes Dis, 2015, 2(3): 276-282. DOI: 10.1016/j.gendis.2015.02.009. [24] GALLARDO-BLANCO HL, VILLARREAL-PEREZ JZ, CERDA-FLORES RM, et al. Genetic variants in KCNJ11, TCF7L2 and HNF4A are associated with type 2 diabetes, BMI and dyslipidemia in families of Northeastern Mexico: A pilot study[J]. Exp Ther Med, 2017, 13(2): 523-529. DOI: 10.3892/etm.2016.3990. [25] KOO BK, CHO YM, PARK BL, et al. Polymorphisms of KCNJ11 (Kir6.2 gene) are associated with type 2 diabetes and hypertension in the Korean population[J]. Diabet Med, 2007, 24(2): 178-186. DOI: 10.1111/j.1464-5491.2006.02050.x. [26] SAKAMOTO Y, INOUE H, KESHAVARZ P, et al. SNPs in the KCNJ11-ABCC8 gene locus are associated with type 2 diabetes and blood pressure levels in the Japanese population[J]. J Hum Genet, 2007, 52(10): 781-793. DOI: 10.1007/s10038-007-0190-x. [27] ZHANCHENG W, WENHUI J, YUN J, et al. The dominant models of KCNJ11 E23K and KCNMB1 E65K are associated with essential hypertension (EH) in Asian: Evidence from a meta-analysis[J]. Medicine (Baltimore), 2019, 98(23): e15828. DOI: 10.1097/MD.0000000000015828. [28] KANE GC, BEHFAR A, DYER RB, et al. KCNJ11 gene knockout of the Kir6.2 KATP channel causes maladaptive remodeling and heart failure in hypertension[J]. Hum Mol Genet, 2006, 15(15): 2285-2297. DOI: 10.1093/hmg/ddl154. [29] ZHANG B, NOVITSKAYA T, WHEELER DG, et al. KCNJ11 ablation is associated with increased nitro-oxidative stress during ischemia-reperfusion injury: Implications for human ischemic cardiomyopathy[J]. Circ Heart Fail, 2017, 10(2): e003523. DOI: 10.1161/CIRCHEARTFAILURE.116.003523. [30] WEBER C, NOELS H. Atherosclerosis: Current pathogenesis and therapeutic options[J]. Nat Med, 2011, 17(11): 1410-1422. DOI: 10.1038/nm.2538. [31] XU Y, ZHAO Z, LIU S, et al. Association of nonalcoholic fatty liver disease and coronary artery disease with FADS2 rs3834458 gene polymorphism in the Chinese Han population[J]. Gastroenterol Res Pract, 2019, 2019: 6069870. DOI: 10.1155/2019/6069870. [32] ZHUANG L, ZHAO Y, ZHAO W, et al. The E23K and A190A variations of the KCNJ11 gene are associated with early-onset type 2 diabetes and blood pressure in the Chinese population[J]. Mol Cell Biochem, 2015, 404(1-2): 133-141. DOI: 10.1007/s11010-015-2373-7. [33] WEBSTER RJ, WARRINGTON NM, BEILBY JP, et al. The longitudinal association of common susceptibility variants for type 2 diabetes and obesity with fasting glucose level and BMI[J]. BMC Med Genet, 2010, 11: 140. DOI: 10.1186/1471-2350-11-140. [34] PECIOSKA S, ZILLIKENS MC, HENNEMAN P, et al. Association between type 2 diabetes loci and measures of fatness[J]. PLoS One, 2010, 5(1): e8541. DOI: 10.1371/journal.pone.0008541. [35] HOTTA K, KITAMOTO A, KITAMOTO T, et al. Association between type 2 diabetes genetic susceptibility loci and visceral and subcutaneous fat area as determined by computed tomography[J]. J Hum Genet, 2012, 57(5): 305-310. DOI: 10.1038/jhg.2012.21. [36] AGARWAL A K, JAIN V, SINGLA S, et al. Prevalence of non-alcoholic fatty liver disease and its correlation with coronary risk factors in patients with type 2 diabetes[J]. J Assoc Physicians India, 2011, 59: 351-354. DOI: 10.14260/jemds/2015/1174. [37] KATSIKI N, MIKHAILIDIS DP, MANTZOROS CS. Non-alcoholic fatty liver disease and dyslipidemia: An update[J]. Metabolism, 2016, 65(8): 1109-1123. DOI: 10.1016/j.metabol.2016.05.003. [38] KHAN V, VERMA AK, BHATT D, et al. Association of genetic variants of KCNJ11 and KCNQ1 genes with risk of type 2 diabetes mellitus (T2DM) in the Indian population: A case-control study[J]. Int J Endocrinol, 2020, 2020: 5924756. DOI: 10.1155/2020/5924756.
计量
- 文章访问数: 527
- HTML全文浏览量: 114
- PDF下载量: 19
- 被引次数: 0