中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

KCNJ11 rs5210位点多态性与非酒精性脂肪性肝病及冠心病的遗传易感性分析

徐艳艳 赵真真 刘守胜 宋欢 辛永宁

引用本文:
Citation:

KCNJ11 rs5210位点多态性与非酒精性脂肪性肝病及冠心病的遗传易感性分析

DOI: 10.3969/j.issn.1001-5256.2021.06.027
基金项目: 

国家自然科学基金面上项目 (31770837)

利益冲突声明:本研究不存在研究者、伦理委员会成员、受试者监护人以及与公开研究成果有关的利益冲突。
作者贡献声明:徐艳艳负责课题设计,资料分析,撰写论文;赵真真、刘守胜、宋欢参与收集数据,修改论文;辛永宁负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    作者简介:

    徐艳艳(1994—),女,主要从事非酒精性脂肪性肝病研究

    通信作者:

    辛永宁,xinyongning@163.com

  • 中图分类号: R575.5

KCNJ11 rs5210 polymorphism and genetic susceptibility to nonalcoholic fatty liver disease and coronary artery disease

  • 摘要:   目的  在青岛地区汉族人群中,研究内向整流钾通道蛋白J亚单位11号成员(KCNJ11)基因rs5210位点多态性与非酒精性脂肪性肝病(NAFLD)及冠心病(CAD)的相关性。  方法  随机纳入2018年12月—2019年9月就诊于青岛市市立医院的246例NAFLD患者为NAFLD组,201例CAD患者为CAD组,116例NAFLD合并CAD患者为合并组,342例健康对照人群为对照组。采集空腹静脉血进行生化检测。提取全血基因组DNA,采用PCR的方法进行KCNJ11 rs5210基因型测定。应用χ2检验分析KCNJ11 rs5210基因频率分布是否符合Hardy-Weinberg平衡法则,以确定检验样本是否具有群体代表性。应用χ2检验分析各组之间性别、基因型及等位基因频率的差异性。符合正态分布的计量资料多组间比较采用单因素方差分析,进一步两两比较采用LSD-t检验;不符合正态分布计量资料多组间比较采用Kruskal-Wallis H检验,两两比较采用Bonferroni法。应用非条件logistic回归模型计算比值比(OR)及95%可信区间。  结果  经测序发现KCNJ11 rs5210具有AA、GA、GG 3种基因型。对照组、NAFLD组、CAD组及合并组之间进行比较rs5210位点等位基因频率和基因型分布均无统计学差异(P值均>0.05)。经校正年龄、性别、BMI,差异亦无统计学意义(P值均>0.05)。全部受试人群中,携带AA基因型受试者ALP水平高于GA基因型(P=0.048);在NAFLD组中,与携带AA基因型受试者相比,GA基因型携带者具有更高的BMI、TBil水平(P值分别为0.042、0.002)。非条件logistic回归分析表明,BMI升高与NAFLD患病风险相关(OR=1.35,P<0.01),HDL降低可提示NAFLD患病风险增加(OR=0.33,P<0.01);FPG升高、HDL降低可提示CAD(OR=1.51,P<0.01;OR=0.11,P<0.01)、NAFLD+CAD(OR=1.46,P<0.01;OR=0.06,P<0.01)患病风险增加。  结论  青岛地区汉族人群中KCNJ11 rs5210多态性与NAFLD及CAD的发病风险无明显相关性。

     

  • 表  1  4组之间一般临床资料及相关实验室指标比较

    指标 对照组(n=342) NAFLD组(n=246) 合并组(n=116) CAD组(n=201) 统计值 P
    年龄(岁) 45.00(20.00~75.00) 45.00(24.00~73.00) 62.00(32.00~74.00)1)2) 67.00(30.00~75.00)1)2) H=325.83 <0.01
    女/男(例) 150/192 109/137 36/801)2) 74/127 χ2=8.48 0.04
    BMI(kg/m2) 23.49±3.08 26.51±2.901) 25.19±2.581)2) 24.60±3.271)2) F=130.17 <0.01
    FPG(mmol/L) 4.59(2.92~16.72) 4.77(2.90~16.10)1) 5.42(3.04~16.21)1)2) 5.22(1.81~18.33)1)2) H=100.76 <0.01
    TC(mmol/L) 5.20(0.84~18.50) 5.27(2.60~13.90) 4.31(1.64~8.49)1)2) 4.48(2.06~12.80)1)2) H=63.95 <0.01
    TG(mmol/L) 1.10(0.33~8.33) 1.51(0.53~32.34)1) 1.46(0.50~40.38)1) 1.38(0.05~6.09)1) H=61.48 <0.01
    HDL(mmol/L) 1.34(0.58~3.60) 1.18(0.66~2.58)1) 1.03(0.62~2.28)1)2) 1.01(0.35~6.90)1)2) H=181.92 <0.01
    LDL(mmol/L) 3.08(1.65~5.55) 3.31(1.20~15.37) 2.64(0.70~5.20)1)2) 2.66(0.87~9.82)1)2) H=67.77 <0.01
    ALT(U/L) 18.00(6.00~287.17) 23.80(5.63~325.69)1) 22.25(7.00~153.00)1) 20.97(1.20~305.02)1)2) H=52.53 <0.01
    AST(U/L) 20.30(10.00~524.75) 22.28(1.81~87.85)1) 22.42(0.74~438.66)1) 22.45(10.13~381.84)1) H=22.24 <0.01
    GGT(U/L) 20.00(7.00~374.50) 30.52(10.23~1043.56)1) 26.44(9.05~902.84)1) 27.11(9.47~171.78)1) H=80.61 <0.01
    ALP(U/L) 66.16(15.00~182.29) 76.11(1.60~499.84)1) 82.41(44.45~509.41)1)2) 83.14(28.72~234.74)1) H=93.97 <0.01
    TBil(μmol/L) 13.47(5.60~55.50) 11.90(5.00~40.80)1) 13.47(5.50~52.70) 13.30(2.50~63.90) H=12.12 <0.01
    注:与对照组相比,1)P<0.05;与NAFLD组相比,2)P<0.05。
    下载: 导出CSV

    表  2  KCNJ11 rs5210位点等位基因和基因型频率分布

    项目 对照组(n=342) NAFLD组(n=246) 合并组(n=116) CAD组(n=201) χ2 P
    基因型[例(%)] 4.63 0.59
      AA 84(24.6) 59(24.0) 25(21.6) 55(27.4)
      GA 173(50.6) 113(45.9) 63(54.3) 98(48.8)
      GG 85(24.9) 74(30.1) 28(24.1) 48(23.9)
    等位基因[例(%)] 2.16 0.54
      A 341(49.9) 231(47.0) 113(48.7) 208(51.7)
      G 343(50.1) 261(53.0) 119(51.3) 194(48.3)
    隐性模型[例(%)] 3.04 0.39
      GA+AA 257(75.1) 172(69.9) 88(75.9) 153(76.1)
      GG 85(24.9) 74(30.1) 28(24.1) 48(23.9)
    显性模型[例(%)] 1.46 0.69
      AA 84(24.6) 59(24.0) 25(21.6) 55(27.4)
      GG+GA 258(75.4) 187(76.0) 91(78.4) 146(72.6)
    下载: 导出CSV

    表  3  全部受试人群KCNJ11 rs5210位点多态性不同基因型之间各指标比较

    指标 AA(n=223) GA(n=447) GG(n=235) 统计值 P
    年龄(岁) 55.00(20.00~75.00) 54.00(23.00~75.00) 53.00(21.00~75.00) H=0.99 0.61
    女/男(例) 88/135 173/274 108/127 χ2=3.57 0.17
    BMI(kg/m2) 24.65(16.44~32.87) 24.81(15.24~38.54) 24.66(17.13~34.35) H=1.86 0.40
    FPG(mmol/L) 4.81(2.90~17.60) 4.84(2.90~18.30) 4.89(1.80~15.60) H=0.33 0.85
    TC(mmol/L) 5.07(0.94~13.90) 5.03(0.84~18.50) 4.94(0.99~9.01) H=0.72 0.70
    TG(mmol/L) 1.27(0.41~8.33) 1.33(0.05~40.38) 1.32(0.33~10.32) H=1.52 0.47
    HDL(mmol/L) 1.18(0.54~3.60) 1.16(0.35~6.90) 1.16(0.40~3.49) H=0.44 0.80
    LDL(mmol/L) 3.12(0.87~8.37) 3.04(1.20~15.37) 2.97(0.74~11.37) H=1.34 0.51
    ALT(U/L) 20.21(5.70~325.69) 21.63(1.20~305.02) 19.18(6.00~156.66) H=5.05 0.08
    AST(U/L) 21.35(1.81~381.84) 21.45(0.80~524.75) 20.83(0.74~427.83) H=2.91 0.23
    GGT(U/L) 24.40(7.52~610.35) 25.66(7.00~902.84) 24.69(8.00~1043.56) H=1.03 0.60
    ALP(U/L) 76.34(30.00~327.90) 73.51(15.00~509.41)1) 74.07(1.60~499.84) H=6.23 0.04
    TBil(μmol/L) 13.22(3.00~64.00) 13.41(3.00~55.00) 13.22(6.00~53.00) H=1.54 0.46
    注:与AA相比,1)P<0.05。
    下载: 导出CSV

    表  4  NAFLD组KCNJ11 rs5210位点多态性不同基因型之间各指标比较

    指标 AA(n=59) GA(n=113) GG(n=74) 统计值 P
    年龄(岁) 47.00(24.00~72.00) 45.00(25.00~73.00) 46.00(28.00~72.00) H=3.77 0.15
    女/男(例) 30/29 47/66 32/42 χ2=1.39 0.50
    BMI(kg/m2) 25.39(20.20~32.87) 26.40(20.06~34.72)1) 26.06(20.20~34.35) H=6.39 0.04
    FPG(mmol/L) 4.81(3.27~16.11) 4.66(2.88~13.20) 4.89(3.55~15.62) H=0.98 0.61
    TC(mmol/L) 5.42(3.12~13.90) 5.25(2.60~8.77) 5.21(3.11~9.01) H=1.19 0.55
    TG(mmol/L) 1.64(0.53~6.07) 1.51(0.62~32.34) 1.53(0.62~10.32) H=0.18 0.92
    HDL(mmol/L) 1.21(0.70~2.13) 1.16(0.72~2.58) 1.13(0.66~1.93) H=3.57 0.17
    LDL(mmol/L) 3.35(1.74~8.37) 3.32(1.20~15.37) 3.30(1.82~11.37) H=0.54 0.76
    ALT(U/L) 22.76(11.51~325.69) 26.86(5.63~277.92) 22.80(10.31~111.54) H=1.70 0.43
    AST(U/L) 22.71(1.81~87.85) 22.06(12.02~68.91) 21.83(11.62~55.35) H=0.19 0.91
    GGT(U/L) 27.74(14.37~610.35) 33.01(10.23~165.61) 29.14(10.70~1043.56) H=2.31 0.32
    ALP(U/L) 82.35(41.61~327.90) 73.02(41.33~163.10) 77.50(1.60~499.84) H=5.82 0.05
    TBil(μmol/L) 11.00(5.00~33.10) 13.10(6.50~40.80) 11.95(5.90~23.90) H=11.62 0.003
    注:与AA相比,1)P<0.05。
    下载: 导出CSV

    表  5  NAFLD、CAD及NAFLD+CAD危险因素的logistic回归分析结果

    指标 NAFLD CAD NAFLD+CAD
    OR 95%CI P OR 95%CI P OR 95%CI P
    BMI 1.35 1.25~1.45 <0.01 1.05 0.98~1.12 0.18 1.08 0.99~1.18 0.10
    FPG 1.08 0.94~1.24 0.30 1.51 1.29~1.76 <0.01 1.46 1.20~1.78 <0.01
    TC 1.02 0.87~1.18 0.85 0.91 0.75~1.10 0.33 1.02 0.84~1.25 0.82
    TG 1.07 0.92~1.24 0.36 0.94 0.75~1.17 0.58 1.11 0.91~1.35 0.32
    HDL 0.33 0.16~0.71 <0.01 0.11 0.05~0.26 <0.01 0.06 0.02~0.18 <0.01
    LDL 1.20 0.98~1.46 0.07 0.69 0.50~0.95 0.02 0.61 0.40~0.92 0.02
    rs 5210 G等位基因携带 0.87 0.57~1.35 0.55 0.97 0.61~1.54 0.90 1.07 0.60~1.92 0.82
    下载: 导出CSV
  • [1] National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association; Fatty Liver Expert Committee, Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease: A 2018 update[J]. J Clin Hepatol, 2018, 34(5) : 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.

    中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 临床肝胆病杂志, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.
    [2] LIN SC, FENG G, LIU JL, et al. From nonalcoholic fatty liver disease to metabolic fatty liver disease: An analysis based on disease heterogeneity[J]. J Clin Hepatol, 2020, 36(11): 2597-2600. DOI: 10.3969/j.issn.1001-5256.2020.11.045.

    林思岑, 冯巩, 刘军林, 等. 从非酒精性脂肪性肝病到代谢性脂肪性肝病—基于疾病异质性角度的分析[J]. 临床肝胆病杂志, 2020, 36(11): 2597-2600. DOI: 10.3969/j.issn.1001-5256.2020.11.045.
    [3] KHERA AV, KATHIRESAN S. Genetics of coronary artery disease: Discovery, biology and clinical translation[J]. Nat Rev Genet, 2017, 18(6): 331-344. DOI: 10.1038/nrg.2016.160.
    [4] PYXARAS SA, WIJNS W, REIBER J, et al. Invasive assessment of coronary artery disease[J]. J Nucl Cardiol, 2018, 25(3): 860-871. DOI: 10.1007/s12350-017-1050-5.
    [5] LABAZI H, TRASK AJ. Coronary microvascular disease as an early culprit in the pathophysiology of diabetes and metabolic syndrome[J]. Pharmacol Res, 2017, 123: 114-121. DOI: 10.1016/j.phrs.2017.07.004.
    [6] MUSSO G, GAMBINO R, CASSADER M, et al. Meta-analysis: Natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity[J]. Ann Med, 2011, 43(8): 617-649. DOI: 10.3109/07853890.2010.518623.
    [7] ANSTEE QM, TARGHER G, DAY CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(6): 330-344. DOI: 10.1038/nrgastro.2013.41.
    [8] YOUNOSSI Z, ANSTEE QM, MARIETTI M, et al. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 11-20. DOI: 10.1038/nrgastro.2017.109.
    [9] VALENTI L, AL-SERRI A, DALY AK, et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease[J]. Hepatology, 2010, 51(4): 1209-1217. DOI: 10.1002/hep.23622.
    [10] ANSTEE QM, DAY CP. The genetics of nonalcoholic fatty liver disease: Spotlight on PNPLA3 and TM6SF2[J]. Semin Liver Dis, 2015, 35(3): 270-290. DOI: 10.1055/s-0035-1562947.
    [11] KOSTER JC, PERMUTT MA, NICHOLS CG. Diabetes and insulin secretion: The ATP-sensitive K+ channel (K ATP) connection[J]. Diabetes, 2005, 54(11): 3065-3072. DOI: 10.2337/diabetes.54.11.3065.
    [12] ABDELHAMID I, LASRAM K, MEILOUD G, et al. E23K variant in KCNJ11 gene is associated with susceptibility to type 2 diabetes in the Mauritanian population[J]. Prim Care Diabetes, 2014, 8(2): 171-175. DOI: 10.1016/j.pcd.2013.10.006.
    [13] QIU L, NA R, XU R, et al. Quantitative assessment of the effect of KCNJ11 gene polymorphism on the risk of type 2 diabetes[J]. PLoS One, 2014, 9(4): e93961. DOI: 10.1371/journal.pone.0093961.
    [14] SHIMOMURA K. The K(ATP) channel and neonatal diabetes[J]. Endocr J, 2009, 56(2): 165-175. DOI: 10.1507/endocrj.k08e-160.
    [15] BONNEFOND A, PHILIPPE J, DURAND E, et al. Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene[J]. PLoS One, 2012, 7(6): e37423. DOI: 10.1371/journal.pone.0037423.
    [16] MARTHINET E, BLOC A, OKA Y, et al. Severe congenital hyperinsulinism caused by a mutation in the Kir6.2 subunit of the adenosine triphosphate-sensitive potassium channel impairing trafficking and function[J]. J Clin Endocrinol Metab, 2005, 90(9): 5401-5406. DOI: 10.1210/jc.2005-0202.
    [17] FEDELE F, MANCONE M, CHILIAN WM, et al. Role of genetic polymorphisms of ion channels in the pathophysiology of coronary microvascular dysfunction and ischemic heart disease[J]. Basic Res Cardiol, 2013, 108(6): 387. DOI: 10.1007/s00395-013-0387-4.
    [18] CENSIN JC, PETERS S, BOVIJN J, et al. Causal relationships between obesity and the leading causes of death in women and men[J]. PLoS Genet, 2019, 15(10): e1008405. DOI: 10.1371/journal.pgen.1008405.
    [19] BYRNE CD, TARGHER G. NAFLD: A multisystem disease[J]. J Hepatol, 2015, 62(1 Suppl): s47-s64. DOI: 10.1016/j.jhep.2014.12.012.
    [20] GAGGINI M, MORELLI M, BUZZIGOLI E, et al. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease[J]. Nutrients, 2013, 5(5): 1544-1560. DOI: 10.3390/nu5051544.
    [21] National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association. Guidelines of diagnosis and treatment for nonalcoholic fatty liver disease: A 2010 update[J]. J Clin Hepatol, 2010, 26(2): 120-124. http://lcgdbzz.org/cn/article/doi/1001-5256%20(2010)%2002-0120-05

    中华医学会肝病学分会脂肪肝和酒精性肝病学组. 非酒精性脂肪性肝病诊疗指南(2010年修订版)[J]. 临床肝胆病杂志, 2010, 26(2): 120-124. http://lcgdbzz.org/cn/article/doi/1001-5256%20(2010)%2002-0120-05
    [22] HAO P. The Study of single nucleotide polymorphisms(SNPS) of KCNJ11 gene associated with type 2 diabetes of Chinese Koreans in Yanbian area[D]. Yanji: Yanbian University, 2012.

    郝萍. 延边地区朝鲜族KCNJ11基因单核苷酸多态性与2型糖尿病的相关性研究[D]. 延吉: 延边大学, 2012.
    [23] KHAN IA, VATTAM KK, JAHAN P, et al. Correlation between KCNQ1 and KCNJ11 gene polymorphisms and type 2 and post-transplant diabetes mellitus in the Asian Indian population[J]. Genes Dis, 2015, 2(3): 276-282. DOI: 10.1016/j.gendis.2015.02.009.
    [24] GALLARDO-BLANCO HL, VILLARREAL-PEREZ JZ, CERDA-FLORES RM, et al. Genetic variants in KCNJ11, TCF7L2 and HNF4A are associated with type 2 diabetes, BMI and dyslipidemia in families of Northeastern Mexico: A pilot study[J]. Exp Ther Med, 2017, 13(2): 523-529. DOI: 10.3892/etm.2016.3990.
    [25] KOO BK, CHO YM, PARK BL, et al. Polymorphisms of KCNJ11 (Kir6.2 gene) are associated with type 2 diabetes and hypertension in the Korean population[J]. Diabet Med, 2007, 24(2): 178-186. DOI: 10.1111/j.1464-5491.2006.02050.x.
    [26] SAKAMOTO Y, INOUE H, KESHAVARZ P, et al. SNPs in the KCNJ11-ABCC8 gene locus are associated with type 2 diabetes and blood pressure levels in the Japanese population[J]. J Hum Genet, 2007, 52(10): 781-793. DOI: 10.1007/s10038-007-0190-x.
    [27] ZHANCHENG W, WENHUI J, YUN J, et al. The dominant models of KCNJ11 E23K and KCNMB1 E65K are associated with essential hypertension (EH) in Asian: Evidence from a meta-analysis[J]. Medicine (Baltimore), 2019, 98(23): e15828. DOI: 10.1097/MD.0000000000015828.
    [28] KANE GC, BEHFAR A, DYER RB, et al. KCNJ11 gene knockout of the Kir6.2 KATP channel causes maladaptive remodeling and heart failure in hypertension[J]. Hum Mol Genet, 2006, 15(15): 2285-2297. DOI: 10.1093/hmg/ddl154.
    [29] ZHANG B, NOVITSKAYA T, WHEELER DG, et al. KCNJ11 ablation is associated with increased nitro-oxidative stress during ischemia-reperfusion injury: Implications for human ischemic cardiomyopathy[J]. Circ Heart Fail, 2017, 10(2): e003523. DOI: 10.1161/CIRCHEARTFAILURE.116.003523.
    [30] WEBER C, NOELS H. Atherosclerosis: Current pathogenesis and therapeutic options[J]. Nat Med, 2011, 17(11): 1410-1422. DOI: 10.1038/nm.2538.
    [31] XU Y, ZHAO Z, LIU S, et al. Association of nonalcoholic fatty liver disease and coronary artery disease with FADS2 rs3834458 gene polymorphism in the Chinese Han population[J]. Gastroenterol Res Pract, 2019, 2019: 6069870. DOI: 10.1155/2019/6069870.
    [32] ZHUANG L, ZHAO Y, ZHAO W, et al. The E23K and A190A variations of the KCNJ11 gene are associated with early-onset type 2 diabetes and blood pressure in the Chinese population[J]. Mol Cell Biochem, 2015, 404(1-2): 133-141. DOI: 10.1007/s11010-015-2373-7.
    [33] WEBSTER RJ, WARRINGTON NM, BEILBY JP, et al. The longitudinal association of common susceptibility variants for type 2 diabetes and obesity with fasting glucose level and BMI[J]. BMC Med Genet, 2010, 11: 140. DOI: 10.1186/1471-2350-11-140.
    [34] PECIOSKA S, ZILLIKENS MC, HENNEMAN P, et al. Association between type 2 diabetes loci and measures of fatness[J]. PLoS One, 2010, 5(1): e8541. DOI: 10.1371/journal.pone.0008541.
    [35] HOTTA K, KITAMOTO A, KITAMOTO T, et al. Association between type 2 diabetes genetic susceptibility loci and visceral and subcutaneous fat area as determined by computed tomography[J]. J Hum Genet, 2012, 57(5): 305-310. DOI: 10.1038/jhg.2012.21.
    [36] AGARWAL A K, JAIN V, SINGLA S, et al. Prevalence of non-alcoholic fatty liver disease and its correlation with coronary risk factors in patients with type 2 diabetes[J]. J Assoc Physicians India, 2011, 59: 351-354. DOI: 10.14260/jemds/2015/1174.
    [37] KATSIKI N, MIKHAILIDIS DP, MANTZOROS CS. Non-alcoholic fatty liver disease and dyslipidemia: An update[J]. Metabolism, 2016, 65(8): 1109-1123. DOI: 10.1016/j.metabol.2016.05.003.
    [38] KHAN V, VERMA AK, BHATT D, et al. Association of genetic variants of KCNJ11 and KCNQ1 genes with risk of type 2 diabetes mellitus (T2DM) in the Indian population: A case-control study[J]. Int J Endocrinol, 2020, 2020: 5924756. DOI: 10.1155/2020/5924756.
  • 加载中
表(5)
计量
  • 文章访问数:  527
  • HTML全文浏览量:  114
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-06
  • 录用日期:  2020-12-17
  • 出版日期:  2021-06-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回