[1] |
ZHANG QD, LU LG. Mechanisms and treatment of cholestasis- induced liver fibrosis[J]. J Clin Hepatol, 2015, 31(3): 337-341. DOI: 10.3969/j.issn.1001-5256.2015.03.005.
张启迪, 陆伦根. 胆汁淤积致肝纤维化的机制及治疗[J]. 临床肝胆病杂志, 2015, 31(3): 337-341. DOI: 10.3969/j.issn.1001-5256.2015.03.005.
|
[2] |
Chinese Society of Hepatology, Chinese Medical Association; Chinese Society of Gastroenterology, Chinese Medical Association; Chinese Society of Infectious Diseases, Chinese Medical Association. Consensus on the diagnosis and treatment of cholestasis liver diseases(2015)[J]. J Clin Hepatol, 2015, 31(12): 1989-1999. DOI: 10.3969/j.issn.1001-5256.2015.12.005.
中华医学会肝病学分会, 中华医学会消化病学分会, 中华医学会感染病学分会. 胆汁淤积性肝病诊断和治疗共识(2015)[J]. 临床肝胆病杂志, 2015, 31(12): 1989-1999. DOI: 10.3969/j.issn.1001-5256.2015.12.005.
|
[3] |
CHIANG J, FERRELL JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(3): g554-g573. DOI: 10.1152/ajpgi.00223.2019.
|
[4] |
LI M, CAI SY, BOYER JL. Mechanisms of bile acid mediated inflammation in the liver[J]. Mol Aspects Med, 2017, 56: 45-53. DOI: 10.1016/j.mam.2017.06.001.
|
[5] |
LI XF, GONG JY, WANG JS. Association between enterohepatic circulation of bile acid and cholestatic liver disease[J]. J Clin Hepatol, 2017, 33(10): 1922-1927. DOI: 10.3969/j.issn.1001-5256.2017.10.014.
李晓峰, 龚敬宇, 王建设. 胆汁酸的肠肝循环与胆汁淤积性肝病[J]. 临床肝胆病杂志, 2017, 33(10): 1922-1927. DOI: 10.3969/j.issn.1001-5256.2017.10.014.
|
[6] |
SHEN H, HU M, WEI ZH, et al. Bile formation, secretion, and excretion and the pathogenesis of cholestasis[J]. J Clin Hepatol, 2019, 35(2): 431-437. DOI: 10.3969/j.issn.1001-5256.2019.02.043.
申弘, 胡萌, 魏泽辉, 等. 胆汁的生成、分泌、排泄及胆汁淤积发生机制[J]. 临床肝胆病杂志, 2019, 35(2): 431-437. DOI: 10.3969/j.issn.1001-5256.2019.02.043.
|
[7] |
JANSEN PL, GHALLAB A, VARTAK N, et al. The ascending pathophysiology of cholestatic liver disease[J]. Hepatology, 2017, 65(2): 722-738. DOI: 10.1002/hep.28965.
|
[8] |
CHIANG J, FERRELL JM. Bile acid metabolism in liver pathobiology[J]. Gene Expr, 2018, 18(2): 71-87. DOI: 10.3727/105221618X15156018385515.
|
[9] |
TRAUNER M, FUCHS CD, HALILBASIC E, et al. New therapeutic concepts in bile acid transport and signaling for management of cholestasis[J]. Hepatology, 2017, 65(4): 1393-1404. DOI: 10.1002/hep.28991.
|
[10] |
KEITEL V, DRÖGE C, HÄUSSINGER D. Targeting FXR in cholestasis[J]. Handb Exp Pharmacol, 2019, 256: 299-324. DOI: 10.1007/164_2019_231.
|
[11] |
GULAMHUSEIN AF, HIRSCHFIELD GM. Primary biliary cholangitis: Pathogenesis and therapeutic opportunities[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(2): 93-110. DOI: 10.1038/s41575-019-0226-7.
|
[12] |
PABLO ARAB J, CABRERA D, ARRESE M. Bile acids in cholestasis and its treatment[J]. Ann Hepatol, 2017, 16(Suppl 1): s53-s57. DOI: 10.5604/01.3001. 0010.5497.
|
[13] |
CHEUNG AC, LORENZO PISARELLO MJ, LARUSSO NF. Pathobiology of biliary epithelia[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4 Pt B): 1220-1231. DOI: 10.1016/j.bbadis.2017.06.024.
|
[14] |
BAIOCCHI L, ZHOU T, LIANGPUNSAKUL S, et al. Dual role of bile acids on the biliary epithelium: Friend or foe?[J]. Int J Mol Sci, 2019, 20(8): 1869. DOI: 10.3390/ijms20081869.
|
[15] |
CARIELLO M, PICCININ E, GARCIA-IRIGOYEN O, et al. Nuclear receptor FXR, bile acids and liver damage: Introducing the progressive familial intrahepatic cholestasis with FXR mutations[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4 Pt B): 1308-1318. DOI: 10.1016/j.bbadis.2017.09.019.
|
[16] |
IBRAHIM S, DAYOUB R, KRAUTBAUER S, et al. Bile acid-induced apoptosis and bile acid synthesis are reduced by over-expression of Augmenter of Liver Regeneration (ALR) in a STAT3-dependent mechanism[J]. Exp Cell Res, 2019, 374(1): 189-197. DOI: 10.1016/j.yexcr.2018.11.023.
|
[17] |
LI Y, TANG R, LEUNG P, et al. Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases[J]. Autoimmun Rev, 2017, 16(9): 885-896. DOI: 10.1016/j.autrev.2017.07.002.
|
[18] |
O'BRIEN KM, ALLEN KM, ROCKWELL CE, et al. IL-17A synergistically enhances bile acid-induced inflammation during obstructive cholestasis[J]. Am J Pathol, 2013, 183(5): 1498-1507. DOI: 10.1016/j.ajpath.2013.07.019.
|
[19] |
GUO C, XIE S, CHI Z, et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome[J]. Immunity, 2016, 45(4): 944. DOI: 10.1016/j.immuni.2016.10.009.
|
[20] |
PANZITT K, FICKERT P, WAGNER M. Regulation of autophagy by bile acids and in cholestasis - CholestoPHAGY or CholeSTOPagy[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(2): 166017. DOI: 10.1016/j.bbadis.2020.166017.
|
[21] |
KIM S, HAN SY, YU KS, et al. Impaired autophagy promotes bile acid-induced hepatic injury and accumulation of ubiquitinated proteins[J]. Biochem Biophys Res Commun, 2018, 495(1): 1541-1547. DOI: 10.1016/j.bbrc.2017.11.202.
|
[22] |
PANZITT K, JUNGWIRTH E, KRONES E, et al. FXR-dependent Rubicon induction impairs autophagy in models of human cholestasis[J]. J Hepatol, 2020, 72(6): 1122-1131. DOI: 10.1016/j.jhep.2020.01.014.
|
[23] |
GAO L, LV G, GUO X, et al. Activation of autophagy protects against cholestasis-induced hepatic injury[J]. Cell Biosci, 2014, 4: 47. DOI: 10.1186/2045-3701-4-47.
|
[24] |
GAO L, LV G, LI R, et al. Glycochenodeoxycholate promotes hepatocellular carcinoma invasion and migration by AMPK/mTOR dependent autophagy activation[J]. Cancer Lett, 2019, 454: 215-223. DOI: 10.1016/j.canlet.2019.04.009.
|
[25] |
GAO X, FU T, WANG C, et al. Computational discovery and experimental verification of farnesoid X receptor agonist auraptene to protect against cholestatic liver injury[J]. Biochem Pharmacol, 2017, 146: 127-138. DOI: 10.1016/j.bcp. 201 7.09.016.
|
[26] |
BYUN S, KIM DH, RYERSON D, et al. Postprandial FGF19-induced phosphorylation by Src is critical for FXR function in bile acid homeostasis[J]. Nat Commun, 2018, 9(1): 2590. DOI: 10.1038/s41467-018-04697-5.
|
[27] |
THOMPSON MD, MOGHE A, CORNUET P, et al. β-Catenin regulation of farnesoid X receptor signaling and bile acid metabolism during murine cholestasis[J]. Hepatology, 2018, 67(3): 955-971. DOI: 10.1002/hep.29371.
|
[28] |
LIU Y, CHEN K, LI F, et al. Probiotic lactobacillus rhamnosus GG prevents liver fibrosis through inhibiting hepatic bile acid synthesis and enhancing bile acid excretion in mice[J]. Hepatology, 2020, 71(6): 2050-2066. DOI: 10.1002/hep.30975.
|
[29] |
KEITEL V, STINDT J, HÄUSSINGER D. Bile acid-activated receptors: GPBAR1 (TGR5) and other G protein-coupled receptors[J]. Handb Exp Pharmacol, 2019, 256: 19-49. DOI: 10.1007/164_2019_230.
|
[30] |
KEITEL V, HÄUSSINGER D. Role of TGR5 (GPBAR1) in liver disease[J]. Semin Liver Dis, 2018, 38(4): 333-339. DOI: 10.1055/s-0038-1669940.
|
[31] |
KLINDT C, REICH M, HELLWIG B, et al. The G protein-coupled bile acid receptor TGR5 (Gpbar1) modulates endothelin-1 signaling in liver[J]. Cells, 2019, 8(11): 1467. DOI: 10.3390/cells8111467.
|
[32] |
REICH M, DEUTSCHMANN K, SOMMERFELD A, et al. TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro[J]. Gut, 2016, 65(3): 487-501. DOI: 10.1136/gutjnl-2015-309458.
|
[33] |
ERICE O, LABIANO I, ARBELAIZ A, et al. Differential effects of FXR or TGR5 activation in cholangiocarcinoma progression[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4 Pt B): 1335-1344. DOI: 10.1016/j.bbadis.2017.08.016.
|
[34] |
RODRIGUES CM, MOSHAGE H. Targeting TGR5 in cholangiocyte proliferation: Default topic[J]. Gut, 2016, 65(3): 369-370. DOI: 10.1136/gutjnl-2015-310812.
|
[35] |
CHEN MJ, LIU C, WAN Y, et al. Enterohepatic circulation of bile acids and their emerging roles on glucolipid metabolism[J]. Steroids, 2021, 165: 108757. DOI: 10.1016/j.steroids.2020.108757.
|
[36] |
WANG Y, GAO X, ZHANG X, et al. Gut microbiota dysbiosis is associated with altered bile acid metabolism in infantile cholestasis[J]. mSystems, 2019, 4(6): e00463-19. DOI: 10.1128/mSystems.00463-19.
|
[37] |
SABINO J, VIEIRA-SILVA S, MACHIELS K, et al. Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD[J]. Gut, 2016, 65(10): 1681-1689. DOI: 10.1136/gutjnl-2015-311004.
|
[38] |
QUIGLEY EM. Primary biliary cirrhosis and the microbiome[J]. Semin Liver Dis, 2016, 36(4): 349-353. DOI: 10.1055/s-0036-1594006.
|
[39] |
RVHLEMANN MC, HEINSEN FA, ZENOUZI R, et al. Faecal microbiota profiles as diagnostic biomarkers in primary sclerosing cholangitis[J]. Gut, 2017, 66(4): 753-754. DOI: 10.1136/gutjnl-2016-312180.
|
[40] |
LIAO L, SCHNEIDER KM, GALVEZ E, et al. Intestinal dysbiosis augments liver disease progression via NLRP3 in a murine model of primary sclerosing cholangitis[J]. Gut, 2019, 68(8): 1477-1492. DOI: 10.1136/gutjnl-2018-316670.
|
[41] |
TEDESCO D, THAPA M, CHIN CY, et al. Alterations in intestinal microbiota lead to production of interleukin 17 by intrahepatic γδ T-cell receptor-positive cells and pathogenesis of cholestatic liver disease[J]. Gastroenterology, 2018, 154(8): 2178-2193. DOI: 10.1053/j.gastro.2018.02.019.
|
[42] |
ISAACS-TEN A, ECHEANDIA M, MORENO-GONZALEZ M, et al. Intestinal microbiome-macrophage crosstalk contributes to cholestatic liver disease by promoting intestinal permeability in mice[J]. Hepatology, 2020, 72(6): 2090-2108. DOI: 10.1002/hep.31228.
|
[43] |
TERZIROLI BERETTA-PICCOLI B, MIELI-VERGANI G, VERGANI D, et al. The challenges of primary biliary cholangitis: What is new and what needs to be done[J]. J Autoimmun, 2019, 105: 102328. DOI: 10.1016/j.jaut.2019.102328.
|
[44] |
CABRERA D, ARAB JP, ARRESE M. UDCA, NorUDCA, and TUDCA in liver diseases: A review of their mechanisms of action and clinical applications[J]. Handb Exp Pharmacol, 2019, 256: 237-264. DOI: 10.1007/164_2019_241.
|
[45] |
BEUERS U, TRAUNER M, JANSEN P, et al. New paradigms in the treatment of hepatic cholestasis: From UDCA to FXR, PXR and beyond[J]. J Hepatol, 2015, 62(1 Suppl): s25-s37. DOI: 10.1016/j.jhep.2015.02.023.
|
[46] |
CAO Y, XIAO Y, ZHOU K, et al. FXR agonist GW4064 improves liver and intestinal pathology and alters bile acid metabolism in rats undergoing small intestinal resection[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 317(2): g108-g115. DOI: 10.1152/ajpgi.00356.2017.
|
[47] |
BAGHDASARYAN A, CLAUDEL T, GUMHOLD J, et al. Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2-/- (Abcb4-/-) mouse cholangiopathy model by promoting biliary HCO3- output[J]. Hepatology, 2011, 54(4): 1303-1312. DOI: 10.1002/hep.24537.
|
[48] |
HARRISON SA, RINELLA ME, ABDELMALEK MF, et al. NGM282 for treatment of non-alcoholic steatohepatitis: A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial[J]. Lancet, 2018, 391(10126): 1174-1185. DOI: 10.1016/S0140-6736(18)30474-4.
|
[49] |
DEGIROLAMO C, SABBÀ C, MOSCHETTA A. Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23[J]. Nat Rev Drug Discov, 2016, 15(1): 51-69. DOI: 10.1038/nrd.2015.9.
|
[50] |
MAYO MJ, WIGG AJ, LEGGETT BA, et al. NGM282 for treatment of patients with primary biliary cholangitis: A multicenter, randomized, double-blind, placebo-controlled trial[J]. Hepatol Commun, 2018, 2(9): 1037-1050. DOI: 10.1002/hep4.1209.
|