中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

Effect of gallic acid in increasing the chemosensitivity of hepatocellular carcinoma HepG2 cells to sorafenib

DOI: 10.12449/JCH250215
Research funding:

Health Science and Health Technology Innovation Project of Jilin Province (2020J082)

More Information
  • Corresponding author: ZHAO Wenjing, xingyuewj@163.com (ORCID: 0000-0002-0841-9632)
  • Received Date: 2024-07-09
  • Accepted Date: 2024-09-18
  • Published Date: 2025-02-25
  •   Objective  To investigate the chemosensitization effect of gallic acid (GA) combined with sorafenib (Sora) on hepatocellular carcinoma HepG2 cells and related mechanisms.  Methods  HepG2 cells were randomly divided into control group, GA group, Sora group, and GA+Sora group. CCK8 assay was used to measure cell viability; CompuSyn software was used to analyze combination index (CI); colony formation assay was used to evaluate the colony formation ability of cells; flow cytometry was used to measure cell apoptosis; wound healing assay and Transwell chamber assay were used to observe the migration and invasion abilities of cells; Western Blot was used to measure the expression matrix metalloproteinase 2 (MMP-2), matrix metalloproteinase 9 (MMP-9), and apoptosis-related proteins. HepG2 cells were subcutaneously inoculated into the lower right back of mice, and 6 days later, the mice were divided into control group, GA group, Sora group, and GA+Sora group. Tumor size and body weight were measured once a week, and drug intervention was performed for 21 days. Then the nude mice were sacrificed, and tumor weight was measured. A one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups.  Results  The mean IC50 values of GA and Sora for the treatment of HepG2 cells for 48 hours were 123.47±5.16 μmol/L and 9.87±0.98 μmol/L, respectively, and when Sora was combined with 70 μmol/L GA (IC30), IC50 decreased to 2.06±0.35 μmol/L; the CI value was<1 for Sora at different concentrations combined with 70 μmol/L GA. The number of cell colonies was 234.0±20.4, 147.0±12.1, 129.3±13.3, and 73.0±7.6, respectively, in the four groups, and the GA+Sora group had a significantly lower number of cell colonies than the control group, the GA group, and the Sora group (all P<0.05). After 48 hours of treatment, the cell apoptosis rate was 1.98%±0.29%, 15.17%± 1.56%, 18.65%±1.48%, and 34.60%±5.36%, respectively, in the four groups, and the GA+Sora group had a significantly higher cell apoptosis rate than the control group, the GA group, and the Sora group (all P<0.05). After 24 hours of treatment, the cell migration rate was 55.59%±5.08%, 29.34%±4.36%, 21.80%±5.16%, and 6.47%±2.75%, respectively, in the four groups, and the GA+Sora group had a significantly lower cell migration rate than the control group, the GA group, and the Sora group (all P<0.05). After 48 hours of treatment, the number of transmembrane cells was 223.7±13.0, 168.3±10.9, 155.3±29.1, and 62.7±19.7, respectively, in the four groups, and the GA+Sora group had a significantly lower number of transmembrane cells than the control group, the GA group, and the Sora group (all P<0.05). Compared with the control group, the GA group, the Sora group, and the GA+Sora group had significant reductions in the protein expression levels of MMP-2, MMP-9, and Bcl-2 (all P<0.05) and significant increases in the protein expression levels of Bax and cleaved caspase-3 (all P<0.05). Compared with the control group, the GA, Sora, and GA+Sora groups had significant reductions in tumor volume and weight (all P<0.05), and compared with the Sora group, the GA+Sora group had significant reductions in tumor volume and weight in nude mice (both P<0.05).  Conclusion  GA can increase the sensitivity of HepG2 cells to Sora chemotherapy, possibly by promoting cell apoptosis and inhibiting cell migration and invasion after combination with Sora.

     

  • [1]
    ZHOU J, SUN HC, WANG Z, et al. Guidelines for the diagnosis and treatment of primary liver cancer(2022 edition)[J]. Liver Cancer, 2023, 12( 5): 405- 444. DOI: 10.1159/000530495.
    [2]
    CHEN W, ZHENG R, BAADE PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66( 2): 115- 132. DOI: 10.3322/caac.21338.
    [3]
    YANG XL, XUE JH, CHEN TY, et al. Effect of atractylone on the viability and apoptosis of hepatoma HepG2 cells and related mechanism[J]. J Clin Hepatol, 2021, 37( 11): 2589- 2594. DOI: 10.3969/j.issn.1001-5256.2021.11.020.

    杨雪丽, 薛建华, 陈天阳, 等. 苍术酮对肝癌HepG2细胞活性、凋亡的影响及其相关机制[J]. 临床肝胆病杂志, 2021, 37( 11): 2589- 2594. DOI: 10.3969/j.issn.1001-5256.2021.11.020.
    [4]
    LI Z, LIU JK. The mechanism of p53 signaling pathway regulating ferroptosis in hepatocellular carcinoma[J]. J Clin Hepatol, 2023, 39( 4): 956- 960. DOI: 10.3969/j.issn.1001-5256.2023.04.032.

    李震, 刘江凯. p53信号通路调控铁死亡在肝细胞癌中的作用机制[J]. 临床肝胆病杂志, 2023, 39( 4): 956- 960. DOI: 10.3969/j.issn.1001-5256.2023.04.032.
    [5]
    General Office of National Health Commission. Standard for diagnosis and treatment of primary liver cancer(2022 edition)[J]. J Clin Hepatol, 2022, 38( 2): 288- 303. DOI: 10.3969/j.issn.1001-5256.2022.02.009.

    国家卫生健康委办公厅. 原发性肝癌诊疗指南(2022年版)[J]. 临床肝胆病杂志, 2022, 38( 2): 288- 303. DOI: 10.3969/j.issn.1001-5256.2022.02.009.
    [6]
    BENSON AB, D’ANGELICA MI, ABBOTT DE, et al. Guidelines insights: Hepatobiliary cancers, version 2.2019[J]. J Natl Compr Canc Netw, 2019, 17( 4): 302- 310. DOI: 10.6004/jnccn.2019.0019.
    [7]
    XIAN LF, ZHAO P, CHEN X, et al. Heterogeneity, inherent and acquired drug resistance in patient-derived organoid models of primary liver cancer[J]. Cell Oncol(Dordr), 2022, 45( 5): 1019- 1036. DOI: 10.1007/s13402-022-00707-3.
    [8]
    AI XY, HOU XF, FENG NP. Combination of shikonin and gefitinib reverses drug resistance in human non-small cell lung cancer and its mechanism[J]. China J Chin Mater Med, 2024, 49( 1): 175- 184. DOI: 10.19540/j.cnki.cjcmm.20230810.401.

    艾鑫仪, 侯雪峰, 冯年平. 紫草素与吉非替尼联用逆转人非小细胞肺癌耐药及其机制研究[J]. 中国中药杂志, 2024, 49( 1): 175- 184. DOI: 10.19540/j.cnki.cjcmm.20230810.401.
    [9]
    HONG ZC, TANG PL, LIU B, et al. Erratum for ferroptosis-ralated genes for overall survival prediction in patients with colorectal cancer can be inhibited by gallic acid[J]. Int J Biol Sci, 2022, 18( 4): 1398- 1399. DOI: 10.7150/ijbs.69081.
    [10]
    KO EB, JANG YG, KIM CW, et al. Gallic acid hindered lung cancer progression by inducing cell cycle arrest and apoptosis in A549 lung cancer cells via PI3K/Akt pathway[J]. Biomol Ther(Seoul), 2022, 30( 2): 151- 161. DOI: 10.4062/biomolther.2021.074.
    [11]
    ABOREHAB NM, ELNAGAR MR, WALY NE. Gallic acid potentiates the apoptotic effect of paclitaxel and carboplatin via overexpression of Bax and P53 on the MCF-7 human breast cancer cell line[J]. J Biochem Mol Toxicol, 2021, 35( 2): e22638. DOI: 10.1002/jbt.22638.
    [12]
    BULBUL MV, KARABULUT S, KALENDER M, et al. Effects of gallic acid on endometrial cancer cells in two and three dimensional cell culture models[J]. Asian Pac J Cancer Prev, 2021, 22( 6): 1745- 1751. DOI: 10.31557/APJCP.2021.22.6.1745.
    [13]
    SUN GJ, ZHANG SQ, XIE YR, et al. Gallic acid as a selective anticancer agent that induces apoptosis in SMMC-7721 human hepatocellular carcinoma cells[J]. Oncol Lett, 2016, 11( 1): 150- 158. DOI: 10.3892/ol.2015.3845.
    [14]
    XU WB, XIE SD, CHEN X, et al. Effects of quercetin on the efficacy of various chemotherapeutic drugs in cervical cancer cells[J]. Drug Des Devel Ther, 2021, 15: 577- 588. DOI: 10.2147/DDDT.S291865.
    [15]
    SHI CJ, ZHENG YB, PAN FF, et al. Gallic acid suppressed tumorigenesis by an lncRNA MALAT1-Wnt/β-catenin axis in hepatocellular carcinoma[J]. Front Pharmacol, 2021, 12: 708967. DOI: 10.3389/fphar.2021.708967.
    [16]
    LI ZJ, DAI HQ, HUANG XW, et al. Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma[J]. Acta Pharmacol Sin, 2021, 42( 2): 301- 310. DOI: 10.1038/s41401-020-0478-3.
    [17]
    CHOU TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies[J]. Pharmacol Rev, 2006, 58( 3): 621- 681. DOI: 10.1124/pr.58.3.10.
    [18]
    CHEN H, NING L, CAI L, et al. Synergistic antitumor effect of evodiamine combined with sorafenib on hepatocellular carcinoma HepG2 cells[J]. J Hubei Univ Sci Technol Med Sci, 2023, 37( 6): 461- 464, 480. DOI: 10.16751/j.cnki.2095-4646.2023.06.0461.

    陈慧, 宁琳, 蔡丽, 等. 索拉非尼联合吴茱萸碱对肝癌HepG2细胞的协同抗肿瘤作用[J]. 湖北科技学院学报(医学版), 2023, 37( 6): 461- 464, 480. DOI: 10.16751/j.cnki.2095-4646.2023.06.0461.
    [19]
    CHEN C, XU HL, WANG P, et al. Inhibition effect of sorafenib combined with the Saponin fraction from Gleditsia sinensis on HepG2 cells[J]. J Clin Exp Med, 2019, 18( 2): 143- 146. DOI: 10.3969/j.issn.1671-4695.2019.02.009.

    陈成, 许汉林, 王平, 等. 猪牙皂皂苷与索拉非尼联用对肝癌HepG2细胞的抑制作用及其机制[J]. 临床和实验医学杂志, 2019, 18( 2): 143- 146. DOI: 10.3969/j.issn.1671-4695.2019.02.009.
    [20]
    TANG MX, YANG MJ, HE KY, et al. Glycyrrhetinic acid remodels the tumor microenvironment and synergizes with doxorubicin for breast cancer treatment in a murine model[J]. Nanotechnology, 2021, 32( 18): 185702. DOI: 10.1088/1361-6528/abe076.
    [21]
    WANG XQ, LI QF, CHEN L, et al. Inhibitory effect of curcumin on sorafenib resistance in hepatocellular carcinoma and its regulatory mechanism[J/OL]. Chin J Hepat Surg(Electronic Edition), 2024, 13( 5): 729- 735. DOI: 10.3877/cma.j.issn.2095-3232.2024.05.023.

    王向前, 李清峰, 陈磊, 等. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13( 5): 729- 735. DOI: 10.3877/cma.j.issn.2095-3232.2024.05.023.
    [22]
    ZHANG ZW, LI ZG, LI CX. Combination of gallic acid and cisplatin inhibits esophageal cancer by downregulating COX-2[J]. Chin J Surg Integr Tradit West Med, 2024, 30( 4): 562- 567. DOI: 10.3969/j.issn.1007-6948.2024.04.025.

    张仲卫, 李志刚, 李彩霞. 没食子酸联合顺铂通过下调环氧化酶-2抑制食管癌的实验研究[J]. 中国中西医结合外科杂志, 2024, 30( 4): 562- 567. DOI: 10.3969/j.issn.1007-6948.2024.04.025.
    [23]
    YANG QL. Treating advanced malignancies mainly with Dahuang Zhechong pill[J]. Clin J Chin Med, 2013, 5( 19): 16- 17. DOI: 10.3969/j.issn.1674-7860.2013.19.008.

    杨勤龙. 大黄蛰虫丸为主治疗晚期恶性肿瘤[J]. 中医临床研究, 2013, 5( 19): 16- 17. DOI: 10.3969/j.issn.1674-7860.2013.19.008.
    [24]
    YUAN CL, CHEN GP, JING CB, et al. Eriocitrin, a dietary flavonoid suppressed cell proliferation, induced apoptosis through modulation of JAK2/STAT3 and JNK/p38 MAPKs signaling pathway in MCF-7 cells[J]. J Biochem Mol Toxicol, 2022, 36( 1): e22943. DOI: 10.1002/jbt.22943.
    [25]
    WANG ZY, ZHANG H, ZHOU JH, et al. Eriocitrin from lemon suppresses the proliferation of human hepatocellular carcinoma cells through inducing apoptosis and arresting cell cycle[J]. Cancer Chemother Pharmacol, 2016, 78( 6): 1143- 1150. DOI: 10.1007/s00280-016-3171-y.
    [26]
    HAN QQ, YE MR, JIN QL. Demethylzeylasteral inhibits proliferation, migration and invasion and promotes apoptosis of non-small cell lung cancer cells by inhibiting the AKT/CREB signaling pathway[J]. J South Med Univ, 2024, 44( 2): 280- 288. DOI: 10.12122/j.issn.1673-4254.2024.02.10.

    韩齐齐, 叶梦然, 金齐力. 去甲泽拉木醛通过抑制AKT/CREB信号通路抑制非小细胞肺癌细胞的增殖、迁移和侵袭[J]. 南方医科大学学报, 2024, 44( 2): 280- 288. DOI: 10.12122/j.issn.1673-4254.2024.02.10.
    [27]
    XU GS, JIANG HB, PAN Q, et al. Inhibitory effects of betulinic acid on migration and invasion of gastric cancer MGC-803 cells and their mechanisms[J]. J Jilin Univ Med Ed, 2022, 48( 1): 122- 128. DOI: 10.13481/j.1671-587X.20220115.

    许广松, 蒋海兵, 盘箐, 等. 桦木酸对胃癌MGC-803细胞迁移和侵袭的抑制作用及其机制[J]. 吉林大学学报(医学版), 2022, 48( 1): 122- 128. DOI: 10.13481/j.1671-587X.20220115.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (76) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return