中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

Establishment of a noninvasive predictive model for antiviral therapy in patients with chronic hepatitis B virus infection and an age of ≤30 years

DOI: 10.12449/JCH240708
Research funding:

Shenzhen Key Medical Discipline Construction Fund (SZXK076)

More Information
  • Corresponding author: WANG Fang, kaixin919@163.com (ORCID: 0009-0003-0092-3403)
  • Received Date: 2023-11-08
  • Accepted Date: 2024-01-17
  • Published Date: 2024-07-25
  •   Objective  To predict whether antiviral therapy is required in patients with chronic hepatitis B virus (HBV) infection and an age of ≤30 years by establishing a noninvasive model, and to investigate the diagnostic value of this model.  Methods  A retrospective analysis was performed for the clinical data of 175 patients with chronic HBV infection who were admitted to Shenzhen Third People’s Hospital from January 2017 to January 2023 and met the inclusion criteria, and according to the results of liver biopsy, they were divided into treatment group with 41 patients (with indications for antiviral therapy) and observation group with 134 patients (without indications for antiviral therapy). The two groups were analyzed in terms of the indicators including clinical data, imaging examinations, and serum biochemical parameters. The univariate and multivariate Logistic regression analyses were used to investigate the parameters affecting the indication for antiviral therapy, and different models for predicting the need for antiviral therapy were constructed based on related parameters. The receiver operating characteristic (ROC) curve was used to compare the diagnostic value of different models. The independent-samples t test was used for comparison of normally distributed continuous variables between groups, and the Mann-Whitney U rank sum test was used for comparison of non-normally distributed continuous variables between groups; the chi-square test or the Fisher’s exact test was used for comparison of categorical data between groups.  Results  There were significant differences between the treatment group and the observation group in alanine aminotransferase, ferritin, total cholesterol (CHOL), triglyceride, platelet count, liver stiffness measured by sound touch elastography (STE), and procollagen III N-terminal propeptide (PIIIP) (all P<0.05). The multivariate Logistic regression analysis showed that CHOL (odds ratio [OR]=0.4, 95% confidence interval [CI]: 0.2‍ ‍—‍ ‍1.0), STE (OR=1.5, 95%CI: 1.0‍ ‍—‍ ‍2.1), and PIIIP (OR=1.1, 95%CI: 1.0‍ ‍—‍ ‍1.1) were independent predictive factors for the indications for antiviral therapy. Model 1 (STE+PIIIP+CHOL), model 2 (STE+PIIIP), model 3 (STE+CHOL), model 4 (PIIIP+CHOL) had an area under the ROC curve of 0.908, 0.848, 0.725, and 0.725, respectively, while STE, PIIIP, and CHOL used alone had an AUC of 0.836, 0.725, and 0.634, respectively, suggesting that model 1 had the largest AUC, with a specificity of 77.34% and a sensitivity of 96.36%, and had a significant difference compared with STE, PIIIP, CHOL, and the models 2, 3, and 4 (Z=0.21, 3.08, 3.06, 3.23, 0.89, and 0.88, all P<0.05).  Conclusion  The noninvasive model established based on CHOL, STE, and PIIIP has a good value in predicting the need for antiviral therapy in patients with chronic HBV infection and an age of ≤30 years.

     

  • [1]
    World Health Organization. Global hepatitis report, 2017[EB/OL].( 2019-04-04)[ 2022-07-05]. https://www.who.int/hepatitis/publications/global hepatitis report2017/en/. https://www.who.int/hepatitis/publications/global hepatitis report2017/en/
    [2]
    LIU J, LIANG WN, JING WZ, et al. Countdown to 2030: Eliminating hepatitis B disease, China[J]. Bull World Health Organ, 2019, 97( 3): 230- 238. DOI: 10.2471/BLT.18.219469.
    [3]
    FATTOVICH G, BORTOLOTTI F, DONATO F. Natural history of chronic hepatitis B: Special emphasis on disease progression and prognostic factors[J]. J Hepatol, 2008, 48( 2): 335- 352. DOI: 10.1016/j.jhep.2007.11.011.
    [4]
    Chinese Society of Hepatology, Chinese Medical Association; Chinese Society of Infectious Diseases, Chinese Medical Association. Guidelines for the prevention and treatment of chronic hepatitis B(version 2022)[J]. Infect Dis Info, 2023, 36( 1): 1- 17. DOI: 10.3969/j.issn.1007-8134.2023.01.01.

    中华医学会肝病学分会, 中华医学会感染病学分会. 慢性乙型肝炎防治指南(2022年版)[J]. 传染病信息, 2023, 36( 1): 1- 17. DOI: 10.3969/j.issn.1007-8134.2023.01.01.
    [5]
    XIAO GQ, YANG JY, YAN LN. Comparison of diagnostic accuracy of aspartate aminotransferase to platelet ratio index and fibrosis-4 index for detecting liver fibrosis in adult patients with chronic hepatitis B virus infection: A systemic review and meta-analysis[J]. Hepatology, 2015, 61( 1): 292- 302. DOI: 10.1002/hep.27382.
    [6]
    EKIN N, UCMAK F, EBIK B, et al. GPR, King’s Score and S-Index are superior to other non-invasive fibrosis markers in predicting the liver fibrosis in chronic Hepatitis B patients[J]. Acta Gastroenterol Belg, 2022, 85( 1): 62- 68. DOI: 10.51821/85.1.9156.
    [7]
    LIANG XE, DAI L, YANG SL, et al. Combining routine markers improves the accuracy of transient elastography for hepatitis B cirrhosis detection[J]. Dig Liver Dis, 2016, 48( 5): 512- 518. DOI: 10.1016/j.dld.2016.02.002.
    [8]
    ZHOU XL, MA X, WANG YB, et al. Value of aspartate aminotransferase-to-platelet ratio index, fibrosis-4, and gamma-glutamyl transpeptidase-to-platelet ratio in diagnosis of liver inflammation grade in patients with chronic hepatitis B[J]. J Clin Hepatol, 2021, 37( 9): 2066- 2070. DOI: 10.3969/j.issn.1001-5256.2021.09.013.

    周新兰, 马鑫, 王雁冰, 等. APRI、FIB-4和GPR对慢性乙型肝炎肝脏炎症程度的诊断价值[J]. 临床肝胆病杂志, 2021, 37( 9): 2066- 2070. DOI: 10.3969/j.issn.1001-5256.2021.09.013.
    [9]
    GUHA IN, ROSENBERG WM. Noninvasive assessment of liver fibrosis: Serum markers, imaging, and other modalities[J]. Clin Liver Dis, 2008, 12( 4): 883- 900, x. DOI: 10.1016/j.cld.2008.07.010.
    [10]
    ZACCHERINI G, BERNARDI M. The role and indications of albumin in advanced liver disease[J]. Acta Gastroenterol Belg, 2019, 82( 2): 301- 308.
    [11]
    LIN WQ, SUN XC, FENG T, et al. Application of serum cholinesterase albumin total cholesterol level in liver function evaluation of patients with hepatitis cirrhosis[J]. J Pract Med Tech, 2020, 27( 4): 459- 461. DOI: 10.19522/j.cnki.1671-5098.2020.04.021.

    林伟强, 孙小纯, 冯涛, 等. 血清胆碱酯酶白蛋白总胆固醇水平检测在肝炎肝硬化患者肝功能评估中的应用[J]. 实用医技杂志, 2020, 27( 4): 459- 461. DOI: 10.19522/j.cnki.1671-5098.2020.04.021.
    [12]
    ZHANG LJ, SHU XC, XIAO YH. Clinical significance of serum total cholesterol, albumin, prealbum and total bile acid determination in paitients with liver cirrhosis[J]. China Pract Med, 2010, 5( 15): 15- 16. DOI: 10.14163/j.cnki.11-5547/r.2010.15.095.

    张丽娟, 舒晓春, 肖艳辉. 血清TC、ALB、PA和TBA测定在肝硬化中的临床意义[J]. 中国实用医药, 2010, 5( 15): 15- 16. DOI: 10.14163/j.cnki.11-5547/r.2010.15.095.
    [13]
    MA LJ, JI D, WANG CY, et al. A noninvasive diagnosis model for chronic hepatitis B patient based on conventional parameters[J]. Med J Chin People’s Liberation Army, 2019, 44( 10): 857- 861. DOI: 10.11855/j.issn.0577-7402.2019.10.08.

    马丽君, 纪冬, 王春艳, 等. 基于常规指标建立肝脏炎症及纤维化无创诊断模型[J]. 解放军医学杂志, 2019, 44( 10): 857- 861. DOI: 10.11855/j.issn.0577-7402.2019.10.08.
    [14]
    YANG K, PAN Y, JIN L. Clinical value on serum sCD14 level in predicting liver inflammation and fibrosis grade in patients with chronic hepatitis B[J]. J Jiujiang Univ Nat Sci Ed, 2021, 36( 3): 85- 89. DOI: 10.19717/j.cnki.jjun.2021.03.022.

    杨凯, 潘颖, 金蕾. 慢性乙型肝炎患者血清sCD14分子预测肝脏炎症和纤维化等级的临床价值[J]. 九江学院学报(自然科学版), 2021, 36( 3): 85- 89. DOI: 10.19717/j.cnki.jjun.2021.03.022.
    [15]
    ZHU L, YANG JR, HE LL, et al. Advances on the application of transient elastography in the diagnosis of liver fibrosis[J/CD]. Chin J Liver Dis(Electronic Version), 2023, 15( 3): 16- 22. DOI: 10.3969/j.issn.1674-7380.2023.03.003.

    朱璐, 杨君茹, 何玲玲, 等. 瞬时弹性成像在肝纤维化诊断中的应用研究进展[J/CD]. 中国肝脏病杂志(电子版), 2023, 15( 3): 16- 22. DOI: 10.3969/j.issn.1674-7380.2023.03.003.
    [16]
    ZHENG M, CAI WM, WENG HL, et al. ROC curve in evaluation of serum fibrosis index for diagnosing hepatic fibrosis[J]. Chin J Infect Dis, 2002, 20( 4): 225- 228. DOI: 10.3760/j.issn: 1000-6680.2002.04.009.

    郑敏, 蔡卫民, 翁红雷, 等. ROC曲线评价血清纤维化指标对诊断肝纤维化的价值[J]. 中华传染病杂志, 2002, 20( 4): 225- 228. DOI: 10.3760/j.issn:1000-6680.2002.04.009.
  • Relative Articles

    [1]Xiao CHENG, Jiajia WANG, Jing YANG, Rong BAI, Shijie ZHANG, Hongwei ZHANG, Xiangwei WU, Rulin MA, Xianghui ZHANG, Heng GUO, Shuxia GUO, Xinyu PENG. ZJU index and the risk of nonalcoholic fatty liver disease in the Uygur population in the rural area of Xinjiang Uygur Autonomous Region: A cohort study[J]. Journal of Clinical Hepatology, 2023, 39(11): 2588-2595. doi: 10.3969/j.issn.1001-5256.2023.11.012
    [2]Zhiqiang ZHANG, Wei CHEN, Bo LIU. Value of spleen volume in predicting portal hypertensive gastropathy and its severity in patients with liver cirrhosis[J]. Journal of Clinical Hepatology, 2023, 39(4): 826-833. doi: 10.3969/j.issn.1001-5256.2023.04.013
    [3]Huawei QIU, Tianfu LIANG, Zhi ZHONG, Xuejiao JIA, Yang JIANG. Trend and prediction of the disease burden of acute hepatitis B in China[J]. Journal of Clinical Hepatology, 2023, 39(11): 2575-2579. doi: 10.3969/j.issn.1001-5256.2023.11.010
    [4]Xing DAI, Ben GAO, Xinxin ZHANG, Yanyan SUN, Wentao JIANG, Jiang LI. Establishment and validation of a risk prediction model for early-stage complications after liver transplantation[J]. Journal of Clinical Hepatology, 2022, 38(2): 402-408. doi: 10.3969/j.issn.1001-5256.2022.02.027
    [5]Bingqi MA, Huijuan MENG, Wei ZHANG, Xiaofeng DONG, Meng WANG, Jie DOU, Yuning WU, Shiping LI. Prognostic value of several immune and inflammatory indices after curative-intent resection for intrahepatic cholangiocarcinoma[J]. Journal of Clinical Hepatology, 2022, 38(9): 2061-2066. doi: 10.3969/j.issn.1001-5256.2022.09.021
    [6]Yiping LIU, Xinping LI, Lei CHEN, Jinju XIA, Kairong SONG, Ningyang JIA, Wanmin LIU. Accurate imaging diagnosis and recurrence prediction of hepatocellular carcinoma based on artificial intelligence[J]. Journal of Clinical Hepatology, 2022, 38(3): 521-527. doi: 10.3969/j.issn.1001-5256.2022.03.006
    [7]Guoxu FANG, Qinghua ZHANG, Yongying HUANG, Jianmin WANG, Jingfeng LIU. Application of bioinformatics in predicting the risk of hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2022, 38(1): 15-19. doi: 10.3969/j.issn.1001-5256.2022.01.002
    [8]Qiu JIN, Jing YANG, Honglin MA, Pingju LI, Shaoshan HU, Qingqing LIU. Research advances in the value of related markers in predicting the severity and prognosis of acute pancreatitis[J]. Journal of Clinical Hepatology, 2022, 38(12): 2877-2881. doi: 10.3969/j.issn.1001-5256.2022.12.038
    [9]Mingwei LI, Jian GAO, Xiangwei ZHAI, Xiangjun QIAN, Xiajie WEN, Mingjie YAO, Zhaojun DUAN, Erjiang ZHAO, Ling ZHANG, Fengmin LU. Construction and analysis of a predictive model for posthepatectomy recurrence in patients with hepatocellular carcinoma based on preoperative CXCL13 measurement[J]. Journal of Clinical Hepatology, 2021, 37(4): 823-828. doi: 10.3969/j.issn.1001-5256.2021.04.020
    [10]Wang ZheXuan, Wang EnXin, Xia DongDong, Bai Wei, Wang QiuHe, Yuan Jie, Li XiaoMei, Niu Jing, Guo WenGang, Li Kai, Yin ZhanXin, Han GuoHong. Value of Child-Pugh score versus albumin-bilirubin grade in predicting the prognosis of unresectable hepatocellular carcinoma treated by transarterial chemoembolization[J]. Journal of Clinical Hepatology, 2020, 36(1): 113-117. doi: 10.3969/j.issn.1001-5256.2020.01.025
    [11]Xu ZhiQiang, Dong Yi, Wang FuChuan, Wang LiMin, Yan JianGuo, Cao LiLi, Wang Pu, Li AiQin, Zhong YanWei, Zhang Min. Value of transient elastography in the diagnosis of liver fibrosis in chronic hepatitis B children of different ages[J]. Journal of Clinical Hepatology, 2020, 36(6): 1268-1272. doi: 10.3969/j.issn.1001-5256.2020.06.016
    [12]Zhang LiHang, Wang ShanJuan, Lu LunGen, Liu YanLi, Wang YiFei, Xie JinBi. Predictive value of coagulation test parameters for acute upper gastrointestinal bleeding in patients with liver cirrhosis[J]. Journal of Clinical Hepatology, 2018, 34(10): 2130-2135. doi: 10.3969/j.issn.1001-5256.2018.10.014
    [13]Zhang HaiYue, Zhou Pei, Gong ZuoJiong. Predictive value of HBs Ag quantification in pegylated interferon therapy for chronic hepatitis B[J]. Journal of Clinical Hepatology, 2016, 32(5): 977-980. doi: 10.3969/j.issn.1001-5256.2016.05.041
    [14]Wang WenJun, Zhao Yan, Xia DongDong, Wang EnXin, Liu Lei, Han GuoHong. Predictive value of neutrophil-lymphocyte ratio and its dynamic change in patients with hepatocellular carcinoma undergoing transarterial chemoembolization[J]. Journal of Clinical Hepatology, 2016, 32(6): 1139-1144. doi: 10.3969/j.issn.1001-5256.2016.06.024
    [15]Huang ShuiWen, Liu BaoRong, Chen MingSheng, Lin Chun, Zhou Rui, Yang HuiAn, Jiang XiaoYan, Pan Chen, Li DongLiang. Establishment of a predictive model for early virologic response in previously untreated chronic hepatitis B patients treated with telbivudine[J]. Journal of Clinical Hepatology, 2016, 32(7): 1287-1291. doi: 10.3969/j.issn.1001-5256.2016.07.014
    [16]Zhao ChongShan, He WenYan, Wang NingFang, Geng Hua, An HongJie, Zhao BaoSheng, Gao MeiLi, Xu JinFeng. Correlation of liver stiffness measured by Fibro Scan with sex and age in healthy adults undergoing physical examination[J]. Journal of Clinical Hepatology, 2016, 32(4): 724-727. doi: 10.3969/j.issn.1001-5256.2016.04.023
    [17]Zhang ZhiQiao, Wang GongSui, Kang KaiFu, Wu GuoBiao, Wang Peng. Analysis of high-risk groups and predictive factors for hepatic steatosis in patients with chronic hepatitis B[J]. Journal of Clinical Hepatology, 2015, 31(7): 1123-1125. doi: 10.3969/j.issn.1001-5256.2015.07.030
    [18]Chen Man, Zhang Xia. Research advances in molecular prediction of recurrence and metastasis of primary liver cancer after liver transplantation[J]. Journal of Clinical Hepatology, 2014, 30(12): 1361-1365. doi: 10.3969/j.issn.1001-5256.2014.12.032
    [19]Xie YanDi, Feng Bo, Gao Yan, Wei Lai. Predictive factors for mortality in patients with alcoholic cirrhosis[J]. Journal of Clinical Hepatology, 2013, 29(11): 852-857. doi: 10.3969/j.issn.1001-5256.2013.10.013
    [20]Liu ChengYong, Hou YuanPei, Qian XiuMei, Sun Qing, Song Li. Distribution of hepatitis B virus genotype in Xuzhou and its clinical significance[J]. Journal of Clinical Hepatology, 2005, 21(3): 151-152.
  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.5 %FULLTEXT: 14.5 %META: 77.6 %META: 77.6 %PDF: 7.9 %PDF: 7.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.0 %其他: 5.0 %其他: 0.3 %其他: 0.3 %San Lorenzo: 0.2 %San Lorenzo: 0.2 %San Mateo: 0.1 %San Mateo: 0.1 %Tiruchi: 0.1 %Tiruchi: 0.1 %三门峡: 0.2 %三门峡: 0.2 %上海: 1.7 %上海: 1.7 %东京都: 0.2 %东京都: 0.2 %东莞: 0.1 %东莞: 0.1 %丽水: 1.5 %丽水: 1.5 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %佛山: 0.2 %佛山: 0.2 %信阳: 0.3 %信阳: 0.3 %兰州: 0.1 %兰州: 0.1 %凉山: 0.1 %凉山: 0.1 %北京: 2.7 %北京: 2.7 %南宁: 0.5 %南宁: 0.5 %南昌: 0.1 %南昌: 0.1 %卡纳塔克: 0.2 %卡纳塔克: 0.2 %厦门: 0.3 %厦门: 0.3 %古吉拉特: 0.1 %古吉拉特: 0.1 %台州: 1.1 %台州: 1.1 %合肥: 0.1 %合肥: 0.1 %吉林: 0.3 %吉林: 0.3 %呼伦贝尔: 0.2 %呼伦贝尔: 0.2 %咸宁: 0.1 %咸宁: 0.1 %咸阳: 0.9 %咸阳: 0.9 %哈尔滨: 0.5 %哈尔滨: 0.5 %嘉兴: 0.5 %嘉兴: 0.5 %大连: 0.7 %大连: 0.7 %天津: 0.1 %天津: 0.1 %太原: 0.1 %太原: 0.1 %宁德: 0.1 %宁德: 0.1 %宁波: 1.0 %宁波: 1.0 %安康: 0.3 %安康: 0.3 %宜春: 0.3 %宜春: 0.3 %宿迁: 1.2 %宿迁: 1.2 %密蘇里城: 0.1 %密蘇里城: 0.1 %崇左: 0.2 %崇左: 0.2 %巴黎: 0.1 %巴黎: 0.1 %常州: 0.2 %常州: 0.2 %常德: 0.6 %常德: 0.6 %广州: 2.1 %广州: 2.1 %廊坊: 0.7 %廊坊: 0.7 %张家口: 2.0 %张家口: 2.0 %张家界: 0.1 %张家界: 0.1 %徐州: 0.3 %徐州: 0.3 %德阳: 0.6 %德阳: 0.6 %恩施: 0.1 %恩施: 0.1 %成都: 1.0 %成都: 1.0 %扬州: 0.3 %扬州: 0.3 %抚州: 0.5 %抚州: 0.5 %揭阳: 0.1 %揭阳: 0.1 %文昌: 0.2 %文昌: 0.2 %新余: 0.1 %新余: 0.1 %无锡: 0.5 %无锡: 0.5 %日照: 0.1 %日照: 0.1 %昆明: 0.4 %昆明: 0.4 %朝阳: 0.6 %朝阳: 0.6 %杭州: 1.1 %杭州: 1.1 %枣庄: 0.1 %枣庄: 0.1 %榆林: 0.6 %榆林: 0.6 %武汉: 0.2 %武汉: 0.2 %汕头: 0.1 %汕头: 0.1 %江门: 0.3 %江门: 0.3 %池州: 0.2 %池州: 0.2 %沈阳: 0.3 %沈阳: 0.3 %泉州: 0.2 %泉州: 0.2 %泰安: 0.1 %泰安: 0.1 %泰州: 0.2 %泰州: 0.2 %泸州: 0.1 %泸州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.5 %济南: 0.5 %海得拉巴: 0.2 %海得拉巴: 0.2 %海西: 0.3 %海西: 0.3 %淄博: 0.4 %淄博: 0.4 %淮北: 0.3 %淮北: 0.3 %淮南: 0.1 %淮南: 0.1 %淮安: 0.2 %淮安: 0.2 %深圳: 1.6 %深圳: 1.6 %渭南: 0.1 %渭南: 0.1 %湖州: 0.6 %湖州: 0.6 %湘潭: 0.1 %湘潭: 0.1 %湛江: 0.2 %湛江: 0.2 %漳州: 1.2 %漳州: 1.2 %焦作: 0.2 %焦作: 0.2 %珠海: 0.2 %珠海: 0.2 %盐城: 0.3 %盐城: 0.3 %盘锦: 0.3 %盘锦: 0.3 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.4 %福州: 0.4 %科泽科德: 0.1 %科泽科德: 0.1 %秦皇岛: 0.2 %秦皇岛: 0.2 %纽约: 0.1 %纽约: 0.1 %绍兴: 1.2 %绍兴: 1.2 %聊城: 0.1 %聊城: 0.1 %胡志明: 0.1 %胡志明: 0.1 %自贡: 0.1 %自贡: 0.1 %舟山: 0.3 %舟山: 0.3 %芒廷维尤: 16.1 %芒廷维尤: 16.1 %芝加哥: 1.3 %芝加哥: 1.3 %苏州: 0.7 %苏州: 0.7 %荆州: 0.1 %荆州: 0.1 %荆门: 0.5 %荆门: 0.5 %莆田: 0.1 %莆田: 0.1 %莫斯科: 0.3 %莫斯科: 0.3 %萍乡: 0.7 %萍乡: 0.7 %营口: 0.2 %营口: 0.2 %葫芦岛: 0.4 %葫芦岛: 0.4 %蚌埠: 0.3 %蚌埠: 0.3 %衡水: 0.5 %衡水: 0.5 %衢州: 0.3 %衢州: 0.3 %襄阳: 1.1 %襄阳: 1.1 %西宁: 6.6 %西宁: 6.6 %西安: 1.3 %西安: 1.3 %西雅图: 0.2 %西雅图: 0.2 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.2 %贵阳: 0.2 %辽阳: 0.5 %辽阳: 0.5 %运城: 0.5 %运城: 0.5 %连云港: 1.3 %连云港: 1.3 %邯郸: 0.1 %邯郸: 0.1 %邵阳: 0.2 %邵阳: 0.2 %郑州: 0.7 %郑州: 0.7 %郴州: 1.0 %郴州: 1.0 %重庆: 1.5 %重庆: 1.5 %金华: 0.3 %金华: 0.3 %铁岭: 0.5 %铁岭: 0.5 %锦州: 0.2 %锦州: 0.2 %镇江: 0.2 %镇江: 0.2 %长春: 8.4 %长春: 8.4 %长沙: 0.8 %长沙: 0.8 %长治: 0.3 %长治: 0.3 %防城港: 0.1 %防城港: 0.1 %随州: 0.3 %随州: 0.3 %雅安: 0.2 %雅安: 0.2 %雷德蒙德: 0.1 %雷德蒙德: 0.1 %青岛: 0.8 %青岛: 0.8 %鞍山: 2.1 %鞍山: 2.1 %马尼萨: 0.2 %马尼萨: 0.2 %黄冈: 0.6 %黄冈: 0.6 %黄南: 0.1 %黄南: 0.1 %黄山: 0.1 %黄山: 0.1 %黔东南: 0.2 %黔东南: 0.2 %其他其他San LorenzoSan MateoTiruchi三门峡上海东京都东莞丽水乌鲁木齐佛山信阳兰州凉山北京南宁南昌卡纳塔克厦门古吉拉特台州合肥吉林呼伦贝尔咸宁咸阳哈尔滨嘉兴大连天津太原宁德宁波安康宜春宿迁密蘇里城崇左巴黎常州常德广州廊坊张家口张家界徐州德阳恩施成都扬州抚州揭阳文昌新余无锡日照昆明朝阳杭州枣庄榆林武汉汕头江门池州沈阳泉州泰安泰州泸州洛阳济南海得拉巴海西淄博淮北淮南淮安深圳渭南湖州湘潭湛江漳州焦作珠海盐城盘锦石家庄福州科泽科德秦皇岛纽约绍兴聊城胡志明自贡舟山芒廷维尤芝加哥苏州荆州荆门莆田莫斯科萍乡营口葫芦岛蚌埠衡水衢州襄阳西宁西安西雅图诺沃克贵阳辽阳运城连云港邯郸邵阳郑州郴州重庆金华铁岭锦州镇江长春长沙长治防城港随州雅安雷德蒙德青岛鞍山马尼萨黄冈黄南黄山黔东南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (743) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return