中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

Advances in the application of microspheres and nanoparticles in transcatheter arterial chemoembolization for the treatment of hepatocellular carcinoma

DOI: 10.12449/JCH240428
Research funding:

National Natural Science Foundation of China (82273074)

More Information
  • Corresponding author: YANG Tian, yangtian6666@hotmail.com (ORCID: 0000-0003-1544-0976)
  • Received Date: 2023-07-25
  • Accepted Date: 2023-08-10
  • Published Date: 2024-04-25
  • In recent years, transcatheter arterial chemoembolization (TACE) has emerged as a common treatment modality for the treatment of hepatocellular carcinoma (HCC). However, with the ongoing development of embolic agent techniques, the new advances in microspheres and nanoparticles have brought new hope for improving the efficacy and safety of TACE. This article reviews the latest advances and applications of microspheres and nanoparticles in TACE for HCC. First, this article introduces the background of TACE as a therapeutic approach and the emergence of microsphere and nanoparticle techniques, and then it describes the application of various types of microspheres and nanoparticles in TACE and discusses the requisite attributes of an ideal embolic agents. The article focuses on the advances in material science and engineering, as well as the clinical efficacy of drug-eluting microspheres and nanoparticles versus conventional TACE. Furthermore, it discusses the importance of radiological examination in TACE and summarizes the research advances in the radiopaque and magnetic resonance-visible embolic agents. This article also explores the future development directions and challenges of TACE. It also points out the combination of microspheres and nanoparticles with other treatment modalities, the application of personalized and precision medicine in TACE, and the potential regimen of TACE in clinical translation, and meanwhile, it raises the issues of ethics and regulation that need to be further discussed. It is believed that microspheres and nanoparticles have a potential effect in TACE, which provides a theoretical basis and technical support for innovating HCC treatment regimens and improving the prognosis of patients through TACE interventions.

     

  • [1]
    LIU ZL, SUN YZ, ZHEN HF, et al. Network pharmacology integrated with transcriptomics deciphered the potential mechanism of Codonopsis pilosula against hepatocellular carcinoma[J]. Evid Based Complement Alternat Med, 2022, 2022: 1340194. DOI: 10.1155/2022/1340194.
    [2]
    ABOUGHALEB IH, MATBOLI M, SHAWKY SM, et al. Integration of transcriptomes analysis with spectral signature of total RNA for generation of affordable remote sensing of Hepatocellular carcinoma in serum clinical specimens[J]. Heliyon, 2021, 7( 3): e06388. DOI: 10.1016/j.heliyon.2021.e06388.
    [3]
    KIRSTEIN MM, WIRTH TC. Multimodal treatment of hepatocellular carcinoma[J]. Internist(Berl), 2020, 61( 2): 164- 169. DOI: 10.1007/s00108-019-00722-x.
    [4]
    HELLER M, PARIKH ND, FIDELMAN N, et al. Frontiers of therapy for hepatocellular carcinoma[J]. Abdom Radiol(NY), 2021, 46( 8): 3648- 3659. DOI: 10.1007/s00261-021-03065-0.
    [5]
    TAN DJH, WONG C, NG CH, et al. A meta-analysis on the rate of hepatocellular carcinoma recurrence after liver transplant and associations to etiology, alpha-fetoprotein, income and ethnicity[J]. J Clin Med, 2021, 10( 2): 238. DOI: 10.3390/jcm10020238.
    [6]
    SANTOPAOLO F, LENCI I, MILANA M, et al. Liver transplantation for hepatocellular carcinoma: Where do we stand?[J]. World J Gastroenterol, 2019, 25( 21): 2591- 2602. DOI: 10.3748/wjg.v25.i21.2591.
    [7]
    SINGAL AG, LLOVET JM, YARCHOAN M, et al. AASLD practice guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma[J]. Hepatology, 2023, 78( 6): 1922- 1965. DOI: 10.1097/HEP.0000000000000466.
    [8]
    NEVOLA R, RUOCCO R, CRISCUOLO L, et al. Predictors of early and late hepatocellular carcinoma recurrence[J]. World J Gastroenterol, 2023, 29( 8): 1243- 1260. DOI: 10.3748/wjg.v29.i8.1243.
    [9]
    YU ZY, YANG SY, LI JQ, et al. Current developmental status of non-surgical treatment of hepatocellular carcinoma[J]. J Clin Hepatol, 2021, 37( 5): 1205- 1207. DOI: 10.3969/j.issn.1001-5256.2021.05.048.

    于志远, 杨诗语, 李佳启, 等. 肝细胞癌非手术治疗的发展现状[J]. 临床肝胆病杂志, 2021, 37( 5): 1205- 1207. DOI: 10.3969/j.issn.1001-5256.2021.05.048.
    [10]
    LENCIONI R, DE BAERE T, SOULEN MC, et al. Lipiodol transarterial chemoembolization for hepatocellular carcinoma: A systematic review of efficacy and safety data[J]. Hepatology, 2016, 64( 1): 106- 116. DOI: 10.1002/hep.28453.
    [11]
    PENG QJ, DAI T, XIE GB, et al. Research advances in transcatheter arterial chemoembolization combined with targeted agents or anti-PD-1/PD-L1 monoclonal antibody in treatment of patients with unresectable hepatocellular carcinoma[J]. J Clin Hepatol, 2023, 39( 7): 1740- 1746. DOI: 10.3969/j.issn.1001-5256.2023.07.033.

    彭秋菊, 戴涛, 谢贵波, 等. 不可切除肝细胞癌的经肝动脉化疗栓塞术联合靶向药物或程序性死亡受体1及其配体单抗治疗进展[J]. 临床肝胆病杂志, 2023, 39( 7): 1740- 1746. DOI: 10.3969/j.issn.1001-5256.2023.07.033.
    [12]
    XU JS, CHENG XQ, TAN LF, et al. Microwave responsive nanoplatform via P-selectin mediated drug delivery for treatment of hepatocellular carcinoma with distant metastasis[J]. Nano Lett, 2019, 19( 5): 2914- 2927. DOI: 10.1021/acs.nanolett.8b05202.
    [13]
    LADJU RB, ULHAQ ZS, SORAYA GV. Nanotheranostics: A powerful next-generation solution to tackle hepatocellular carcinoma[J]. World J Gastroenterol, 2022, 28( 2): 176- 187. DOI: 10.3748/wjg.v28.i2.176.
    [14]
    REN ZG, CHEN XM, HONG LJ, et al. Nanoparticle conjugation of ginsenoside Rg3 inhibits hepatocellular carcinoma development and metastasis[J]. Small, 2020, 16( 2): e1905233. DOI: 10.1002/smll.201905233.
    [15]
    KANG T, ZHU QQ, WEI D, et al. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis[J]. ACS Nano, 2017, 11( 2): 1397- 1411. DOI: 10.1021/acsnano.6b06477.
    [16]
    MIN YZ, ROCHE KC, TIAN SM, et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy[J]. Nat Nanotechnol, 2017, 12( 9): 877- 882. DOI: 10.1038/nnano.2017.113.
    [17]
    WANG DW, WU QR, GUO R, et al. Magnetic liquid metal loaded nano-in-micro spheres as fully flexible theranostic agents for SMART embolization[J]. Nanoscale, 2021, 13( 19): 8817- 8836. DOI: 10.1039/d1nr01268a.
    [18]
    ZHANG YC, WANG MZ, HAN XW, et al. Safety and efficacy of camrelizumab added to second-line therapy after drug-eluting bead transarterial chemoembolization combined with apatinib for unresectable hepatocellular carcinoma[J]. J Clin Hepatol, 2023, 39( 4): 834- 842. DOI: 10.3969/j.issn.1001-5256.2023.04.014.

    张延藏, 王满周, 韩新巍, 等. 载药栓塞微球经肝动脉化疗栓塞术联合阿帕替尼治疗不可切除肝癌后二线追加卡瑞利珠单抗的安全性和有效性分析[J]. 临床肝胆病杂志, 2023, 39( 4): 834- 842. DOI: 10.3969/j.issn.1001-5256.2023.04.014.
    [19]
    BAKRANIA A, ZHENG G, BHAT M. Nanomedicine in hepatocellular carcinoma: A new frontier in targeted cancer treatment[J]. Pharmaceutics, 2021, 14( 1): 41. DOI: 10.3390/pharmaceutics14010041.
    [20]
    JIA GR, van VALKENBURGH J, CHEN AZ, et al. Recent advances and applications of microspheres and nanoparticles in transarterial chemoembolization for hepatocellular carcinoma[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2022, 14( 2): e1749. DOI: 10.1002/wnan.1749.
    [21]
    LAMMER J, MALAGARI K, VOGL T, et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: Results of the PRECISION V study[J]. Cardiovasc Intervent Radiol, 2010, 33( 1): 41- 52. DOI: 10.1007/s00270-009-9711-7.
    [22]
    GOLFIERI R, GIAMPALMA E, RENZULLI M, et al. Randomised controlled trial of doxorubicin-eluting beads vs conventional chemoembolisation for hepatocellular carcinoma[J]. Br J Cancer, 2014, 111( 2): 255- 264. DOI: 10.1038/bjc.2014.199.
    [23]
    ZHANG ZS, LI HZ, MA C, et al. Conventional versus drug-eluting beads chemoembolization for infiltrative hepatocellular carcinoma: A comparison of efficacy and safety[J]. BMC Cancer, 2019, 19( 1): 1162. DOI: 10.1186/s12885-019-6386-6.
    [24]
    LE BQG, DOAN TLH. Trend in biodegradable porous nanomaterials for anticancer drug delivery[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2023, 15( 4): e1874. DOI: 10.1002/wnan.1874.
    [25]
    WU G, HUI XD, HU LH, et al. Recent advancement of bioinspired nanomaterials and their applications: A review[J]. Front Bioeng Biotechnol, 2022, 10: 952523. DOI: 10.3389/fbioe.2022.952523.
    [26]
    GIRI TK, CHOUDHARY C, AJAZUDDIN, et al. Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery[J]. Saudi Pharm J, 2013, 21( 2): 125- 141. DOI: 10.1016/j.jsps.2012.05.009.
    [27]
    DELICQUE J, GUIU B, BOULIN M, et al. Liver chemoembolization of hepatocellular carcinoma using TANDEM® microspheres[J]. Future Oncol, 2018, 14( 26): 2761- 2772. DOI: 10.2217/fon-2018-0237.
    [28]
    LEWIS AL, HALL B. Toward a better understanding of the mechanism of action for intra-arterial delivery of irinotecan from DC Bead(TM)(DEBIRI)[J]. Future Oncol, 2019, 15( 17): 2053- 2068. DOI: 10.2217/fon-2019-0071.
    [29]
    LEI Q, ZHAO J, HE F, et al. Preparation of poly(ionic liquid) microbeads via cooling-assisted phase separation method[J]. Macromol Rapid Commun, 2021, 42( 17): e2100275. DOI: 10.1002/marc.202100275.
    [30]
    WANG JM, JANSEN JA, YANG F. Electrospraying: Possibilities and challenges of engineering carriers for biomedical applications-a mini review[J]. Front Chem, 2019, 7: 258. DOI: 10.3389/fchem.2019.00258.
    [31]
    ISHIKAWA T. Prevention of post-embolization syndrome after transarterial chemoembolization for hepatocellular carcinoma-is prophylactic dexamethasone useful, or not?[J]. Hepatobiliary Surg Nutr, 2018, 7( 3): 214- 216. DOI: 10.21037/hbsn.2018.03.08.
    [32]
    IDÉE JM, GUIU B. Use of Lipiodol as a drug-delivery system for transcatheter arterial chemoembolization of hepatocellular carcinoma: A review[J]. Crit Rev Oncol Hematol, 2013, 88( 3): 530- 549. DOI: 10.1016/j.critrevonc.2013.07.003.
    [33]
    XIE Y, QI X, XU K, et al. Transarterial infusion of iRGD-modified ZrO2 nanoparticles with lipiodol improves the tissue distribution of doxorubicin and its antitumor efficacy[J]. J Vasc Interv Radiol, 2019, 30( 12): 2026- 2035.e2. DOI: 10.1016/j.jvir.2019.04.014.
    [34]
    XUE HY, YU ZY, LIU Y, et al. Delivery of miR-375 and doxorubicin hydrochloride by lipid-coated hollow mesoporous silica nanoparticles to overcome multiple drug resistance in hepatocellular carcinoma[J]. Int J Nanomedicine, 2017, 12: 5271- 5287. DOI: 10.2147/IJN.S135306.
    [35]
    LEE SY, CHOI JW, LEE JY, et al. Hyaluronic acid/doxorubicin nanoassembly-releasing microspheres for the transarterial chemoembolization of a liver tumor[J]. Drug Deliv, 2018, 25( 1): 1472- 1483. DOI: 10.1080/10717544.2018.1480673.
    [36]
    LI GP, YE L, PAN JS, et al. Antitumoural hydroxyapatite nanoparticles-mediated hepatoma-targeted trans-arterial embolization gene therapy: in vitro and in vivo studies[J]. Liver Int, 2012, 32( 6): 998- 1007. DOI: 10.1111/j.1478-3231.2012.02761.x.
    [37]
    FANG Y, ZHENG GF, YANG JP, et al. Dual-pore mesoporous carbon@silica composite core-shell nanospheres for multidrug delivery[J]. Angew Chem Int Ed Engl, 2014, 53( 21): 5366- 5370. DOI: 10.1002/anie.201402002.
    [38]
    WHITESIDES GM. The origins and the future of microfluidics[J]. Nature, 2006, 442( 7101): 368- 373. DOI: 10.1038/nature05058.
    [39]
    ROZYNEK Z, BIELAS R, JÓZEFCZAK A. Correction: Efficient formation of oil-in-oil Pickering emulsions with narrow size distributions by using electric fields[J]. Soft Matter, 2019, 15( 7): 1692. DOI: 10.1039/c9sm90016k.
    [40]
    WU ST, FAN K, YANG Q, et al. Smart nanoparticles and microbeads for interventional embolization therapy of liver cancer: State of the art[J]. J Nanobiotechnology, 2023, 21( 1): 42. DOI: 10.1186/s12951-023-01804-7.
    [41]
    FACCIORUSSO A. Drug-eluting beads transarterial chemoembolization for hepatocellular carcinoma: Current state of the art[J]. World J Gastroenterol, 2018, 24( 2): 161- 169. DOI: 10.3748/wjg.v24.i2.161.
    [42]
    GANGLOFF N, ULBRICHT J, LORSON T, et al. Peptoids and polypeptoids at the frontier of supra- and macromolecular engineering[J]. Chem Rev, 2016, 116( 4): 1753- 1802. DOI: 10.1021/acs.chemrev.5b00201.
    [43]
    LEE Y, THOMPSON DH. Stimuli-responsive liposomes for drug delivery[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2017, 9( 5): 10.1002/wnan. 1450. DOI: 10.1002/wnan.1450.
    [44]
    MURA S, NICOLAS J, COUVREUR P. Stimuli-responsive nanocarriers for drug delivery[J]. Nat Mater, 2013, 12( 11): 991- 1003. DOI: 10.1038/nmat3776.
    [45]
    WU BL, ZHOU J, LING GH, et al. CalliSpheres drug-eluting beads versus lipiodol transarterial chemoembolization in the treatment of hepatocellular carcinoma: A short-term efficacy and safety study[J]. World J Surg Oncol, 2018, 16( 1): 69. DOI: 10.1186/s12957-018-1368-8.
    [46]
    BZEIZI KI, ARABI M, JAMSHIDI N, et al. Conventional transarterial chemoembolization versus drug-eluting beads in patients with hepatocellular carcinoma: A systematic review and meta-analysis[J]. Cancers, 2021, 13( 24): 6172. DOI: 10.3390/cancers13246172.
    [47]
    ZENG J, LI L, ZHANG HS, et al. Radiopaque and uniform alginate microspheres loaded with tantalum nanoparticles for real-time imaging during transcatheter arterial embolization[J]. Theranostics, 2018, 8( 17): 4591- 4600. DOI: 10.7150/thno.27379.
    [48]
    HU JJ, ALBADAWI H, CHONG BW, et al. Advances in biomaterials and technologies for vascular embolization[J]. Adv Mater, 2019, 31( 33): e1901071. DOI: 10.1002/adma.201901071.
    [49]
    TACHER V, DURAN R, LIN MD, et al. Multimodality imaging of ethiodized oil-loaded radiopaque microspheres during transarterial embolization of rabbits with VX2 liver tumors[J]. Radiology, 2016, 279( 3): 741- 753. DOI: 10.1148/radiol.2015141624.
    [50]
    MONDINI M, LEVY A, MEZIANI L, et al. Radiotherapy-immunotherapy combinations-perspectives and challenges[J]. Mol Oncol, 2020, 14( 7): 1529- 1537. DOI: 10.1002/1878-0261.12658.
    [51]
    DHONDT E, LAMBERT B, HERMIE L, et al. 90Y radioembolization versus drug-eluting bead chemoembolization for unresectable hepatocellular carcinoma: Results from the TRACE phase II randomized controlled trial[J]. Radiology, 2022, 303( 3): 699- 710. DOI: 10.1148/radiol.211806.
    [52]
    FAN WZ, WU YQ, LU MJ, et al. A meta-analysis of the efficacy and safety of iodine[131I]metuximab infusion combined with TACE for treatment of hepatocellular carcinoma[J]. Clin Res Hepatol Gastroenterol, 2019, 43( 4): 451- 459. DOI: 10.1016/j.clinre.2018.09.006.
    [53]
    LEE KH, LIAPI E, VOSSEN JA, et al. Distribution of iron oxide-containing Embosphere particles after transcatheter arterial embolization in an animal model of liver cancer: Evaluation with MR imaging and implication for therapy[J]. J Vasc Interv Radiol, 2008, 19( 10): 1490- 1496. DOI: 10.1016/j.jvir.2008.06.008.
    [54]
    VAN ELK M, OZBAKIR B, BARTEN-RIJBROEK AD, et al. Alginate microspheres containing temperature sensitive liposomes(TSL) for MR-guided embolization and triggered release of doxorubicin[J]. PLoS One, 2015, 10( 11): e0141626. DOI: 10.1371/journal.pone.0141626.
    [55]
    DASH A, PILLAI MRA, KNAPP FF JR. Production of(177)Lu for targeted radionuclide therapy: Available options[J]. Nucl Med Mol Imaging, 2015, 49( 2): 85- 107. DOI: 10.1007/s13139-014-0315-z.
  • Relative Articles

    [1]Lijuan LONG, Zongyu WANG, Yali ZHAO, Chuanfu QIN, Hua QIU. Research advances in traditional Chinese medicine for the treatment of hepatocellular carcinoma by regulating immune cells[J]. Journal of Clinical Hepatology, 2025, 41(2): 349-358. doi: 10.12449/JCH250223
    [2]Jun LIU, Ling WANG, Yuhuan JIANG, Jingzhi WANG, Huiming LI. Establishment of a risk model based on immunogenic cell death-related genes and its value in predicting the prognosis and tumor microenvironment characteristics of hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2024, 40(12): 2473-2483. doi: 10.12449/JCH241218
    [3]Teng LIU, Xiujuan CHANG, Quanwei HE, Ran XU, Yongping YANG. Efficacy and safety of cryoablation combined with lenvatinib and anti-PD-1 monoclonal antibody in treatment of unresectable hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2024, 40(3): 539-549. doi: 10.12449/JCH240317
    [4]Jianxing LUO, Yang ZHANG, Ne XIANG, Xiaoyu HU. Efficacy and safety of microwave ablation versus hepatic resection in treatment of hepatocellular carcinoma with liver cirrhosis: A Meta-analysis[J]. Journal of Clinical Hepatology, 2024, 40(9): 1807-1815. doi: 10.12449/JCH240915
    [5]Xiaohua ZHANG, Ying FENG, Xianbo WANG. Role of the Hedgehog signaling pathway in hepatocellular carcinoma and its tumor microenvironment[J]. Journal of Clinical Hepatology, 2024, 40(4): 822-827. doi: 10.12449/JCH240429
    [6]Shichun LU. Challenges and reflections on conversion therapy for advanced hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2024, 40(9): 1738-1740. doi: 10.12449/JCH240904
    [7]Chi MA, Guang TAN. Strategies and practice of conversion therapy for hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2024, 40(9): 1725-1731. doi: 10.12449/JCH240902
    [8]Jiaqing LI, Xiaoyang XU, Zexin HU, Shen ZHANG, Binyan ZHONG, Xiaoli ZHU. Value of modified albumin-bilirubin grade in predicting the prognosis of patients with Child-Pugh class A unresectable hepatocellular carcinoma after transcatheter arterial chemoembolization combined with immunotherapy and anti-angiogenic drugs[J]. Journal of Clinical Hepatology, 2024, 40(12): 2450-2456. doi: 10.12449/JCH241215
    [9]Qianxin HUANG, Bin SHEN, Jinchang XIAO, Zhikang GAO, Duntao LYU, Yan LI, Hao XU, Qingqiao ZHANG. Efficacy of drug-eluting beads-transarterial chemoembolization combined with infusion chemotherapy via superior mesenteric artery in treatment of hepatocellular carcinoma complicated by portal vein tumor thrombus[J]. Journal of Clinical Hepatology, 2024, 40(12): 2457-2463. doi: 10.12449/JCH241216
    [10]Zexin HU, Jintao HUANG, Binyan ZHONG, Jian SHEN, Xiaoli ZHU. Current status and prospects of transarterial chemoembolization and its combined regimens in the treatment of hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2024, 40(1): 175-180. doi: 10.12449/JCH240129
    [11]Zexin HU, Jiaqing LI, Wanci LI, Binyan ZHONG, Shuai ZHANG, Jian SHEN, Xiaoli ZHU. Efficacy and safety of transcatheter arterial chemoembolization combined with targeted therapy and immunotherapy in treatment of patients with stage Ⅱ‍b/Ⅲ‍a hepatocellular carcinoma based on China Liver Cancer Staging[J]. Journal of Clinical Hepatology, 2024, 40(3): 550-555. doi: 10.12449/JCH240318
    [12]Liver Oncology Branch, China Association for the Promotion of International Exchange in Healthcare, Immunology Branch. Chinese expert consensus on targeted immunotherapy combined with local therapy for advanced hepatocellular cancer[J]. Journal of Clinical Hepatology, 2023, 39(12): 2782-2792. doi: 10.3969/j.issn.1001-5256.2023.12.006
    [13]Pengwei REN, Ying HAN, Xinmin ZHOU. Predictive indicators for the efficacy of targeted therapy/immunotherapy for hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2023, 39(11): 2705-2709. doi: 10.3969/j.issn.1001-5256.2023.11.028
    [14]Zhisong NI, Junhan WEN, Weiwei ZHAO, Shoujun YU, Liang HAO, Yu CHENG, Xin LIU. Neoadjuvant therapy for hepatocellular carcinoma: Current situation and prospects[J]. Journal of Clinical Hepatology, 2023, 39(11): 2697-2704. doi: 10.3969/j.issn.1001-5256.2023.11.027
    [16]Tang HaoHuan, Zhu XiaoLi, Wang WanSheng, Li WanCi, Zhou LinFeng, Du Hang. Clinical effect of transarterial chemoembolization with ultra-liquid iodized oil combined with drug-eluting beads in treatment of Barcelona Clinic Liver Cancer stage B/C hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2019, 35(7): 1509-1513. doi: 10.3969/j.issn.1001-5256.2019.07.018
    [17]Ma MingYuan, Lin GangYi, Cai ZongYang, Luo HeSan, Wu ShengXi. Efficacy and safety of microsphere transarterid chemoembolization combined with radiotherapy versus microsphere transarterial chemoembolization alone in treatment of patients with unresectable liver cancer[J]. Journal of Clinical Hepatology, 2019, 35(11): 2489-2494. doi: 10.3969/j.issn.1001-5256.2019.11.020
    [19]Liu YunYi, Lai JunXiong, Liu XiaoXin. Yttrium 90 microspheres in the management of hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2011, 27(4): 348-350.
    [20]Wang Jie, Wang XueHao, Feng YaoLiang, Li LinSun, Qian JianMin, Zhang Feng, Lu: Xiang. Pathological assessment of the therapeutic effect on hepatomas treated with Dextran Microsphere hepatic artery emboliztion[J]. Journal of Clinical Hepatology, 2002, 18(5): 316-318.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 36.9 %FULLTEXT: 36.9 %META: 56.0 %META: 56.0 %PDF: 7.2 %PDF: 7.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.0 %其他: 8.0 %其他: 0.3 %其他: 0.3 %Kao-sung: 0.1 %Kao-sung: 0.1 %Rochester: 0.1 %Rochester: 0.1 %Russian Federation: 0.1 %Russian Federation: 0.1 %Tiruchi: 0.1 %Tiruchi: 0.1 %上海: 6.5 %上海: 6.5 %东莞: 0.1 %东莞: 0.1 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 4.2 %北京: 4.2 %南京: 0.4 %南京: 0.4 %南宁: 1.3 %南宁: 1.3 %卡纳塔克: 0.3 %卡纳塔克: 0.3 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大理: 0.3 %大理: 0.3 %大连: 0.4 %大连: 0.4 %天津: 0.4 %天津: 0.4 %太原: 0.1 %太原: 0.1 %孟买: 0.1 %孟买: 0.1 %宁波: 0.1 %宁波: 0.1 %安康: 0.1 %安康: 0.1 %宣城: 0.1 %宣城: 0.1 %常德: 0.4 %常德: 0.4 %广州: 2.4 %广州: 2.4 %廊坊: 0.1 %廊坊: 0.1 %延边: 0.1 %延边: 0.1 %弗吉: 0.1 %弗吉: 0.1 %张家口: 1.2 %张家口: 1.2 %徐州: 0.1 %徐州: 0.1 %得梅因: 0.1 %得梅因: 0.1 %德罕: 0.5 %德罕: 0.5 %成都: 0.4 %成都: 0.4 %无锡: 0.1 %无锡: 0.1 %昆明: 1.2 %昆明: 1.2 %曲靖: 0.1 %曲靖: 0.1 %杭州: 0.9 %杭州: 0.9 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.1 %桂林: 0.1 %武汉: 0.1 %武汉: 0.1 %江门: 0.3 %江门: 0.3 %沈阳: 0.1 %沈阳: 0.1 %洛杉矶: 0.3 %洛杉矶: 0.3 %济南: 0.3 %济南: 0.3 %海得拉巴: 0.5 %海得拉巴: 0.5 %深圳: 0.4 %深圳: 0.4 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.1 %漯河: 0.1 %珠海: 0.5 %珠海: 0.5 %班加罗尔: 0.1 %班加罗尔: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %科泽科德: 0.1 %科泽科德: 0.1 %芒廷维尤: 26.5 %芒廷维尤: 26.5 %芜湖: 0.1 %芜湖: 0.1 %芝加哥: 2.0 %芝加哥: 2.0 %苏州: 0.4 %苏州: 0.4 %莫斯科: 1.1 %莫斯科: 1.1 %西宁: 12.2 %西宁: 12.2 %西安: 0.3 %西安: 0.3 %西雅图: 0.4 %西雅图: 0.4 %诺沃克: 0.1 %诺沃克: 0.1 %费利蒙: 0.3 %费利蒙: 0.3 %赣州: 0.1 %赣州: 0.1 %运城: 0.7 %运城: 0.7 %郑州: 0.5 %郑州: 0.5 %重庆: 0.7 %重庆: 0.7 %金华: 0.1 %金华: 0.1 %铁岭: 0.1 %铁岭: 0.1 %长春: 15.1 %长春: 15.1 %长沙: 2.3 %长沙: 2.3 %阿坝: 0.1 %阿坝: 0.1 %阿鲁纳恰尔: 0.1 %阿鲁纳恰尔: 0.1 %青岛: 0.3 %青岛: 0.3 %香港: 0.1 %香港: 0.1 %马德里: 0.4 %马德里: 0.4 %黄石: 0.1 %黄石: 0.1 %黔南: 0.1 %黔南: 0.1 %其他其他Kao-sungRochesterRussian FederationTiruchi上海东莞加利福尼亚州北京南京南宁卡纳塔克咸阳哈尔滨哥伦布嘉兴大理大连天津太原孟买宁波安康宣城常德广州廊坊延边弗吉张家口徐州得梅因德罕成都无锡昆明曲靖杭州格兰特县桂林武汉江门沈阳洛杉矶济南海得拉巴深圳湘潭漯河珠海班加罗尔石家庄福州科泽科德芒廷维尤芜湖芝加哥苏州莫斯科西宁西安西雅图诺沃克费利蒙赣州运城郑州重庆金华铁岭长春长沙阿坝阿鲁纳恰尔青岛香港马德里黄石黔南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (421) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return