炎症细胞因子在肝硬化患者糖代谢紊乱中的作用
DOI: 10.12449/JCH240926
Role of inflammatory cytokines in disorder of glucose metabolism in patients with liver cirrhosis
-
摘要: 近年来对肝硬化发生、发展过程中白细胞介素-1β、白细胞介素-6、白细胞介素-10、白细胞介素-17、肿瘤坏死因子-α、干扰素-γ、C反应蛋白等常见的炎症细胞因子的作用及机制有了更深入的了解,对炎症细胞因子与糖代谢紊乱及胰岛功能受损的相关性研究也取得了较大的进展。本文综述了肝硬化患者炎症细胞因子及其在糖代谢紊乱、胰岛功能受损中的作用,为阐明肝源性糖尿病的发生机制及其临床管理提供理论依据。Abstract: In recent years, there has been a deeper understanding of the role and mechanisms of common inflammatory cytokines in the development and progression of liver cirrhosis, such as interleukin-1β, interleukin-6, interleukin-10, interleukin-17, tumor necrosis factor-α, interferon-γ, and C-reactive protein, and significant achievements have also been made in the research on the association of these inflammatory cytokines with disorder of glucose metabolism and pancreatic islet dysfunction. This article reviews the role of inflammatory cytokines in patients with liver cirrhosis and their impact on disorder of glucose metabolism and pancreatic islet dysfunction, in order to provide a theoretical basis for clarifying the pathogenesis of hepatogenous diabetes and performing the clinical management of the disease.
-
Key words:
- Liver Cirrhosis /
- Insulin Resistance /
- Inflammation /
- Cytokines
-
肝脏作为葡萄糖生成和储存的主要器官,参与糖代谢的多个环节,包括调节糖酵解、糖原生成、糖原分解及糖异生[1-3],对葡萄糖稳态发挥至关重要的作用。因此,当肝功能受损时往往影响正常的糖代谢,甚至可能出现糖代谢紊乱或糖尿病。据统计,约80%的肝硬化患者存在糖代谢紊乱,30%~50%的患者直接发展为糖尿病[4]。这种由慢性肝病基础发展而来的糖尿病称为肝源性糖尿病(hepatogenous diabetes,HD)。HD发病机制极其复杂且尚未完全阐明,有学者提出胰岛素抵抗(insulin resistance,IR)是HD发病机制的中心环节[5],长期IR导致胰腺β细胞功能降低,胰岛素分泌不足最终发展为HD。
目前对肝硬化患者发生IR的机制尚不清楚,主要认为与肝硬化患者肝功能障碍、门静脉高压及门体分流等因素导致外周血胰岛素在肝脏的灭活减少引起的高胰岛素血症有关。近年来越来越多的研究发现慢性炎症及炎症细胞因子是糖尿病的重要原因,而在慢性肝病基础上,系统炎症反应是其病情进展及合并肝外器官损伤的重要因素,提示肝硬化患者炎症因子水平的改变对IR的形成具有重要意义[6],推断慢性炎症及炎症细胞因子可能是HD发生和发展的关键因素,但迄今尚无更多肝硬化患者炎症细胞因子与糖代谢紊乱发生的相关性研究。本文对肝硬化患者炎症因子的变化及作用、炎症细胞因子在糖代谢紊乱中的作用研究进展予以综述。
1. 炎症细胞因子对肝硬化糖代谢紊乱的影响
1.1 白细胞介素-1β(IL-1β)
IL-1β作为一种主要来源于单核细胞、巨噬细胞的促炎细胞因子,在应答感染、炎症免疫损伤、组织破坏等过程中具有重要作用[7]。有诸多研究表明,在慢性HCV感染及慢性HBV感染中,IL-1β水平显著升高[8-9],其过量释放,可加剧肝脏炎症、细胞坏死及肝组织损伤,引发肝功能障碍,最终导致肝硬化的发生发展[10]。另一方面,高水平的IL-1β也可诱导胰岛β细胞中IL-1β的自我再表达,IL-1β的水平会进一步提高,形成恶性循环[11]。高水平的IL-1β能够通过损害胰岛素的分泌和诱导胰岛β细胞凋亡来破坏胰岛β细胞功能[12]。有研究显示IL-1β可以通过激活核因子-κB(NF-κB)途径导致胰岛β细胞产生过多一氧化氮和活性氧[13],超出了胰岛β细胞的抗氧化防御机制,加剧了细胞的氧化应激、DNA损伤和线粒体功能障碍[14];同时,IL-1β还可以激活Jun-氨基末端激酶(Jun N-terminal kinase,JNK)途径,通过内质网应激损害胰岛β细胞的功能并使其发生凋亡[15],引起IR的发生发展。此外,有研究[16]表明IL-1β抗体和IL-1受体拮抗剂的使用可改善胰岛β细胞功能从而维持糖代谢稳态。综上,在慢性肝病患者中,IL-1β可能与糖代谢障碍有关,可能是HD潜在的治疗靶点之一。
1.2 IL-6
IL-6是一种主要由激活的单核细胞产生的多效性促炎细胞因子,积极参与炎症和免疫调节机制[17]。在HBV感染中,IL-6能够通过NF-κB途径[18]、细胞外信号调节激酶途[19]、Toll样受体2途径[20]等的介导而显著升高。同时,显著升高的IL-6不仅参与乙型肝炎的慢性化过程,又与肝坏死及肝纤维化加重有关[21]。另一方面,IL-6水平变化影响胰岛素分泌,IL-6水平的增高可通过兴奋下丘脑垂体-肾上腺轴,诱发瘦素抵抗以及抑制脂联素表达,导致脂肪细胞释放大量的游离脂肪酸,游离脂肪酸不断在肝脏和肌肉中沉积,影响胰岛素信号传导,从而引起IR[22]。此外,IL-6可以通过激活JNK途径和抑制胰岛素受体底物-1(insulin receptor substrate-1,IRS-1)干扰胰岛素信号传导,同时抑制葡萄糖转运蛋白4(glucose transporter 4,GLUT4)表达,阻碍胰岛素刺激的葡萄糖转运进程[23],进一步促进IR的发生。部分研究还表明,IL-6可以通过细胞自噬、内质网应激和线粒体功能障碍等方式直接影响胰岛细胞的功能[24-25],从而损害胰岛素的分泌,直接促使IR的发生。
1.3 IL-10
IL-10是主要由Th2细胞、Treg细胞分泌的多效性细胞因子,在抗炎及免疫调节中起着至关重要的作用[26]。尽管大量研究已经探究了IL-10在肝硬化进程中的作用,但相关结论并不一致。例如,Clària等[27]发现失代偿性肝硬化患者血清中IL-10的产生显著增加,并且随着肝硬化病情严重程度的加重,这种增加越明显[28]。然而,另一项研究[29]却指出肝硬化患者的IL-10水平明显低于正常人群。这种差异可能源于样本选择、疾病阶段、病因不同以及测量技术等多种因素的差异。在胰腺组织中,IL-10可直接抑制促炎细胞因子包括IL-1β、IL-6、TNF-α等的释放,发挥抗炎作用,减轻胰腺细胞炎症反应[30],同时阻断促炎细胞因子对胰岛素信号传导和葡萄糖稳态的不良影响,增加胰岛素的敏感性;另外也能缓解炎症反应相关脂代谢异常,改善并延缓IR进程[31]。有研究[32]表明,补充外源性IL-10能够降低血糖和改善IR,从而改善肝脂肪变性和炎症。而矛盾的是,免疫细胞衍生的IL-10可以通过抑制脂肪细胞的能量消耗和产热来驱动肥胖症IR的发生[33]。以上研究结果表明,IL-10具有免疫双重作用,且与炎症程度、靶细胞类型等有关。
1.4 IL-17
IL-17是一种由辅助性T淋巴细胞(Th17)细胞群特异性分泌的促炎细胞因子,在介导炎症反应和保护机体免受病原体感染中有重要的生物学功能。HBV能够刺激IL-17的大量分泌,从而介导肝星状细胞的增殖与活化,这又会促使更多Th17进入肝脏,形成正反馈环路[34],且IL-17水平与肝损伤的严重程度、肝硬化病程呈正相关[35]。肝脏IL-17R的表达水平已被证明与IR相关[36],可能与IL-17本身促炎能力较弱,但与其他细胞因子的协同作用能力很强相关。有研究[37]发现,IL-17能够激活NF-κB通路,上调炎症细胞因子基因表达,刺激促炎细胞因子如IL-1β、IL-6等的产生,引起IRS-1磷酸化,使GLUT4的表达减弱,阻滞胰岛信号传导至下游,进一步诱导IR。Duan等[38]发现,二甲双胍可以通过抑制Th1和Th17细胞分化,显著减轻自身免疫性胰岛炎的严重程度,而激活IL-17途径会加速胰岛β细胞凋亡,导致自身免疫性糖尿病的发生。以上研究皆证实了Th17及IL-17与IR的发生、发展存在密切联系,靶向干扰Th17及IL-17的致病机制可能成为治疗HD的前景之一。
1.5 肿瘤坏死因子-α(TNF-α)
TNF-α是一种主要由单核细胞和巨噬细胞产生的促炎细胞因子,主要在免疫反应中扮演关键角色[39]。在肝硬化患者中,TNF-α可以通过肝炎病毒直接刺激合成[40],或者通过病理性细菌易位间接刺激肝脏的免疫反应而进一步增加[41]。在糖代谢中,TNF-α能够增强部分升糖激素的作用,如胰高血糖素、肾上腺皮质激素、儿茶酚胺等,降低胰岛素敏感性,从而影响血糖水平[42];另外,TNF-α可扰乱肝脏葡萄糖代谢,刺激脂肪分解,使游离脂肪酸释放增多,通过脂毒性作用引发并加重IR[43]。同时,TNF-α还可直接干扰体内胰岛素信号转导系统:刺激丝氨酸磷酸化,抑制胰岛素受体和受体底物酪氨酸磷酸化[44],抑制GLUT4表达,阻碍并影响胰岛素刺激的葡萄糖跨膜转运进程[45]。有研究[46]发现,TNF-α还可引起胰岛内巨噬细胞活化并释放IL-1,诱导一氧化氮合酶在淋巴B细胞内表达,导致胰岛β细胞内一氧化氮自由基的增加,从而抑制胰岛素的作用。另有研究[47]指出,TNF-α可直接作用于胰岛β细胞,使胰岛生成环磷酸鸟苷损伤细胞基因,与其他细胞因子协同作用,可加速胰岛β细胞的功能损伤和破坏。以上研究结果提示,TNF-α能够通过直接作用与间接作用共同促使IR和HD发展。
1.6 干扰素-γ(IFN-γ)
IFN-γ是一种主要由T淋巴细胞、NK细胞等分泌产生的细胞因子,特别是在细胞免疫反应中发挥关键作用。在肝硬化患者外周血中IFN-γ水平有所增加[48],且代偿期肝硬化患者IFN-γ水平明显低于失代偿期患者[49]。同时,Šestan等[50]研究发现,高脂饮食诱导的肥胖小鼠在患有肝IR的基础上遭遇病毒感染后,通过IFN-γ下调骨骼肌胰岛素受体表达导致更快速地进展为糖尿病。有研究[51]发现,通过减少IFN-γ的产生,能够抑制棕色脂肪细胞中的产热基因表达,以达到抵抗肥胖、肝炎及IR发生发展的目的。另一方面,Eizirik等[52]通过实验表明,IFN-γ或与TNF-α联合可通过诱导型一氧化氮合酶的产生和激活内在凋亡信号,导致胰岛β细胞的凋亡及损伤。最新研究[53]表明,补充D-阿洛酮糖能够有效抑制肝脏中的IFN-γ,恢复趋化因子信号传导并增强巨噬细胞的功能,IFN-γ水平的降低在减少肝脏炎症及改善IR发展中起关键作用。以上研究成果提示,IFN-γ水平的提高会促进肝硬化患者IR的发生、发展,抑制IFN-γ可能是其良好的潜在治疗靶点。
1.7 C反应蛋白(CRP)
CRP是一种由肝脏合成的急性时相蛋白质,通常在身体受到感染、炎症或者损伤时会增加[54]。在慢性肝病的发生发展过程中,肝细胞的损伤和凋亡触发的炎症反应均会促进CRP的合成;另外,肝硬化患者发生各种并发症如细菌感染、消化道出血、自发性腹膜炎、肝性脑病等时[55-56],也会提高CRP的水平,且超敏C反应蛋白(high-sensitivity C-reactive protein,hs-CRP)的水平与肝细胞受损程度呈正相关[57]。同时,CRP作为一种评估全身性炎症反应的敏感指标,越来越多的研究认为其与糖尿病的发生、发展有密切的联系[58]。一项横断面研究[59]结果表明,非酒精性脂肪性肝病患者的hs-CRP升高水平与IR呈正相关,这可能与hs-CRP能够诱导和上调NF-κB的活性有关,激活的NF-κB通过抑制IRS-1和GLUT4的表达,同时联合各种炎症因子作用,共同抑制胰岛素信号的传导,导致肝胰岛素敏感性受损,加重IR程度,最终导致糖尿病的发生。Yang等[60]实验发现大鼠敲除CRP基因后能够导致食物摄入显著减少、能量消耗增加和胰岛素敏感性改善,葡萄糖钳夹技术检测也显示肝脏胰岛素信号和作用增强。综上,CRP水平的增加可能会推动IR在肝硬化患者中的发生和进展。
2. 小结
综上所述,越来越多的研究证明肝硬化患者有多种炎症细胞因子参与肝脏炎症及纤维化进展,并发现参与肝硬化患者病情进展的多种炎症细胞因子通过相同或不同的途径通路,协同作用或独立作用,参与血糖稳态的调节、IR的发生发展。现有证据提示肝硬化患者长期反复的肝脏慢性炎症可能通过炎症细胞因子诱导IR及HD的发生,进一步深入研究这些细胞因子与肝硬化患者糖代谢紊乱的关联有助于揭示HD发病机制,为HD的早期诊治提供更有效的方法和手段。
-
[1] HAN HS, KANG G, KIM JS, et al. Regulation of glucose metabolism from a liver-centric perspective[J]. Exp Mol Med, 2016, 48( 3): e218. DOI: 10.1038/emm.2015.122. [2] RODEN M, BERNROIDER E. Hepatic glucose metabolism in humans: Its role in health and disease[J]. Best Pract Res Clin Endocrinol Metab, 2003, 17( 3): 365- 383. DOI: 10.1016/s1521-690x(03)00031-9. [3] ADEVA-ANDANY MM, PÉREZ-FELPETE N, FERNÁNDEZ-FERNÁNDEZ C, et al. Liver glucose metabolism in humans[J]. Biosci Rep, 2016, 36( 6): e00416. DOI: 10.1042/BSR20160385. [4] RADWAN HA, HAMED EH, SALEH OM. Significance of serum adiponectin and insulin resistance levels in diagnosis of Egyptian patients with chronic liver disease and HCC[J]. Asian Pac J Cancer Prev, 2019, 20( 6): 1833- 1839. DOI: 10.31557/APJCP.2019.20.6.1833. [5] GARCÍA-COMPEÁN D, GONZÁLEZ-GONZÁLEZ JA, LAVALLE-GONZÁLEZ FJ, et al. Hepatogenous diabetes: Is it a neglected condition in chronic liver disease?[J]. World J Gastroenterol, 2016, 22( 10): 2869- 2874. DOI: 10.3748/wjg.v22.i10.2869. [6] REHMAN K, AKASH MS. Mechanisms of inflammatory responses and development of insulin resistance: How are they interlinked?[J]. J Biomed Sci, 2016, 23( 1): 87. DOI: 10.1186/s12929-016-0303-y. [7] PEIRÓ T, PATEL DF, AKTHAR S, et al. Neutrophils drive alveolar macrophage IL-1β release during respiratory viral infection[J]. Thorax, 2018, 73( 6): 546- 556. DOI: 10.1136/thoraxjnl-2017-210010. [8] XIAO WS, LE YY, ZENG SL, et al. Role of pyroptosis in liver diseases[J]. J Clin Hepatol, 2020, 36( 12): 2847- 2850. DOI: 10.3969/j.issn.1001-5256.2020.12.044.肖伟松, 乐滢玉, 曾胜澜, 等. 细胞焦亡在肝脏疾病中的作用[J]. 临床肝胆病杂志, 2020, 36( 12): 2847- 2850. DOI: 10.3969/j.issn.1001-5256.2020.12.044. [9] WANG Y, CUI L, YANG GF, et al. Hepatitis B e antigen inhibits NF-κB activity by interrupting K63-linked ubiquitination of NEMO[J]. J Virol, 2019, 93( 2): e00667- e00618. DOI: 10.1128/JVI.00667-18. [10] DONG DJ, LU HB, WU W, et al. Correlation between the expression levels of NLRP3 and IL-1β mRNA and the pathogenesis of alcoholic cirrhosis and its mechanism[J]. Chin Hepatol, 2019, 24( 3): 265- 267. DOI: 10.14000/j.cnki.issn.1008-1704.2019.03.017.董德嘉, 卢海波, 吴伟, 等. NLRP3、IL-1β mRNA表达水平与酒精性肝硬化发病相关性及作用机制分析[J]. 肝脏, 2019, 24( 3): 265- 267. DOI: 10.14000/j.cnki.issn.1008-1704.2019.03.017. [11] BÖNI-SCHNETZLER M, THORNE J, PARNAUD G, et al. Increased interleukin(IL)-1beta messenger ribonucleic acid expression in beta-cells of individuals with type 2 diabetes and regulation of IL-1beta in human islets by glucose and autostimulation[J]. J Clin Endocrinol Metab, 2008, 93( 10): 4065- 4074. DOI: 10.1210/jc.2008-0396. [12] WU WT, SYED F, SIMPSON E, et al. The impact of pro-inflammatory cytokines on alternative splicing patterns in human islets[J]. Diabetes, 2021, 71( 1): 116- 127. DOI: 10.2337/db20-0847. [13] CHEN HM, JIN GJ. Downregulation of Salusin-β protects renal tubular epithelial cells against high glucose-induced inflammation, oxidative stress, apoptosis and lipid accumulation via suppressing miR-155-5p[J]. Bioengineered, 2021, 12( 1): 6155- 6165. DOI: 10.1080/21655979.2021.1972900. [14] SHA WX, HU F, BU SZ. Mitochondrial dysfunction and pancreatic islet β-cell failure(Review)[J]. Exp Ther Med, 2020, 20( 6): 266. DOI: 10.3892/etm.2020.9396. [15] BENSELLAM M, CHAN JY, LEE KL, et al. Phlda3 regulates beta cell survival during stress[J]. Sci Rep, 2019, 9( 1): 12827. DOI: 10.1038/s41598-019-49289-5. [16] RUSCITTI P, MASEDU F, ALVARO S, et al. Anti-interleukin-1 treatment in patients with rheumatoid arthritis and type 2 diabetes(TRACK): A multicentre, open-label, randomised controlled trial[J]. PLoS Med, 2019, 16( 9): e1002901. DOI: 10.1371/journal.pmed.1002901. [17] KAUR S, BANSAL Y, KUMAR R, et al. A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors[J]. Bioorg Med Chem, 2020, 28( 5): 115327. DOI: 10.1016/j.bmc.2020.115327. [18] LI YX, REN YL, FU HJ, et al. Hepatitis B virus middle protein enhances IL-6 production via p38 MAPK/NF-κB pathways in an ER stress-dependent manner[J]. PLoS One, 2016, 11( 7): e0159089. DOI: 10.1371/journal.pone.0159089. [19] CHEN Z, LI YX, FU HJ, et al. Hepatitis B virus core antigen stimulates IL-6 expression via p38, ERK and NF-κB pathways in hepatocytes[J]. Cell Physiol Biochem, 2017, 41( 1): 91- 100. DOI: 10.1159/000455954. [20] YI HY, ZHANG Y, YANG XF, et al. Hepatitis B core antigen impairs the polarization while promoting the production of inflammatory cytokines of M2 macrophages via the TLR2 pathway[J]. Front Immunol, 2020, 11: 535. DOI: 10.3389/fimmu.2020.00535. [21] COSTA D, SIMBRUNNER B, JACHS M, et al. Systemic inflammation increases across distinct stages of advanced chronic liver disease and correlates with decompensation and mortality[J]. J Hepatol, 2021, 74( 4): 819- 828. DOI: 10.1016/j.jhep.2020.10.004. [22] AWAZAWA M, UEKI K, INABE K, et al. Adiponectin enhances insulin sensitivity by increasing hepatic IRS-2 expression via a macrophage-derived IL-6-dependent pathway[J]. Cell Metab, 2011, 13( 4): 401- 412. DOI: 10.1016/j.cmet.2011.02.010. [23] MOHAMAD HE, ASKER ME, KESHAWY MM, et al. Infliximab ameliorates tumor necrosis factor-alpha exacerbated renal insulin resistance induced in rats by regulating insulin signaling pathway[J]. Eur J Pharmacol, 2020, 872: 172959. DOI: 10.1016/j.ejphar.2020.172959. [24] WANG XQ, ZHAO DN, CUI YJ, et al. Proinflammatory macrophages impair skeletal muscle differentiation in obesity through secretion of tumor necrosis factor-α via sustained activation of p38 mitogen-activated protein kinase[J]. J Cell Physiol, 2019, 234( 3): 2566- 2580. DOI: 10.1002/jcp.27012. [25] FANG PH, ZHANG L, YU M, et al. Activiated galanin receptor 2 attenuates insulin resistance in skeletal muscle of obese mice[J]. Peptides, 2018, 99: 92- 98. DOI: 10.1016/j.peptides.2017.11.018. [26] ISAC L, SONG JQ. Interleukin 10 promotor gene polymorphism in the pathogenesis of psoriasis[J]. Acta Dermatovenerol Alp Pannonica Adriat, 2019, 28( 3): 119- 123. [27] CLÀRIA J, STAUBER RE, COENRAAD MJ, et al. Systemic inflammation in decompensated cirrhosis: Characterization and role in acute-on-chronic liver failure[J]. Hepatology, 2016, 64( 4): 1249- 1264. DOI: 10.1002/hep.28740. [28] LI C, XING SJ, DUAN XZ, et al. The changes of frequencies of regulatory T cells in peripheral blood and serum levels of IL-1β, IL-6 and IL-10 in patients with HBV-related liver cirrhosis[J]. J Clin Hepatol, 2012, 15( 3): 244- 246. DOI: 10.3969/j.issn.1672-5069.2012.03.023.李晨, 邢少军, 段学章, 等. 乙型肝炎肝硬化患者外周血调节性T细胞频率及血清IL-1β、IL-6和IL-10水平的变化[J]. 实用肝脏病杂志, 2012, 15( 3): 244- 246. DOI: 10.3969/j.issn.1672-5069.2012.03.023. [29] GE DH. Changes and significance of Th1 and Th2 cytokines in peripheral blood of patients with chronic hepatitis B, liver cirrhosis and liver cancer[J]. Chin J Public Health Eng, 2022, 21( 1): 160- 162. DOI: 10.19937/j.issn.1671-4199.2022.01.057.葛大赫. 慢性乙型肝炎及肝硬化、肝癌患者外周血Th1、Th2类细胞因子表达变化及意义[J]. 中国卫生工程学, 2022, 21( 1): 160- 162. DOI: 10.19937/j.issn.1671-4199.2022.01.057. [30] KUMAR R, NG S, ENGWERDA C. The role of IL-10 in malaria: A double edged sword[J]. Front Immunol, 2019, 10: 229. DOI: 10.3389/fimmu.2019.00229. [31] HOLDER KA, GRANT MD. Human cytomegalovirus IL-10 augments NK cell cytotoxicity[J]. J Leukoc Biol, 2019, 106( 2): 447- 454. DOI: 10.1002/JLB.2AB0418-158RR. [32] GOTOH K, INOUE M, MASAKI T, et al. A novel anti-inflammatory role for spleen-derived interleukin-10 in obesity-induced inflammation in white adipose tissue and liver[J]. Diabetes, 2012, 61( 8): 1994- 2003. DOI: 10.2337/db11-1688. [33] BEPPU LY, MOOLI RGR, QU XY, et al. Tregs facilitate obesity and insulin resistance via a Blimp-1/IL-10 axis[J]. JCI Insight, 2021, 6( 3): e140644. DOI: 10.1172/jci.insight.140644. [34] ZHANG HB, YAN X, YANG C, et al. Intrahepatic T helper 17 cells recruited by hepatitis B virus X antigen-activated hepatic stellate cells exacerbate the progression of chronic hepatitis B virus infection[J]. J Viral Hepat, 2020, 27( 11): 1138- 1149. DOI: 10.1111/jvh.13352. [35] ZHAO CJ, ZHANG J, YANG Y, et al. Correlation analysis of Th17 and related cytokines with liver stiffness measurement, liver function and adiponectin levels in alcoholic cirrhosis patients[J]. Prog Mod Biomed, 2020, 20( 22): 4303- 4306. DOI: 10.13241/j.cnki.pmb.2020.22.022.赵春娟, 张静, 杨艳, 等. Th17及相关细胞因子与酒精性肝硬化患者肝脏硬度值、肝功能及脂联素水平的相关性分析[J]. 现代生物医学进展, 2020, 20( 22): 4303- 4306. DOI: 10.13241/j.cnki.pmb.2020.22.022. [36] CHEHIMI M, VIDAL H, ELJAAFARI A. Pathogenic role of IL-17-producing immune cells in obesity, and related inflammatory diseases[J]. J Clin Med, 2017, 6( 7): 68. DOI: 10.3390/jcm6070068. [37] ABDEL-MONEIM A, BAKERY HH, ALLAM G. The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus[J]. Biomed Pharmacother, 2018, 101: 287- 292. DOI: 10.1016/j.biopha.2018.02.103. [38] DUAN W, DING YC, YU XF, et al. Metformin mitigates autoimmune insulitis by inhibiting Th1 and Th17 responses while promoting Treg production[J]. Am J Transl Res, 2019, 11( 4): 2393- 2402. [39] WAJANT H, PFIZENMAIER K, SCHEURICH P. Tumor necrosis factor signaling[J]. Cell Death Differ, 2003, 10( 1): 45- 65. DOI: 10.1038/sj.cdd.4401189. [40] BARATHAN M, RIAZALHOSSEINI B, IYADORAI T, et al. Comparative expression of pro-inflammatory and apoptotic biosignatures in chronic HBV-infected patients with and without liver cirrhosis[J]. Microb Pathog, 2021, 161( Pt A): 105231. DOI: 10.1016/j.micpath.2021.105231. [41] JALAN R, FERNANDEZ J, WIEST R, et al. Bacterial infections in cirrhosis: A position statement based on the EASL Special Conference 2013[J]. J Hepatol, 2014, 60( 6): 1310- 1324. DOI: 10.1016/j.jhep.2014.01.024. [42] VOMHOF-DEKREY EE, PICKLO MJ SR. The Nrf2-antioxidant response element pathway: A target for regulating energy metabolism[J]. J Nutr Biochem, 2012, 23( 10): 1201- 1206. DOI: 10.1016/j.jnutbio.2012.03.005. [43] BOUTARI C, TZIOMALOS K, ATHYROS VG. The adipokines in the pathogenesis and treatment of nonalcoholic fatty liver disease[J]. Hippokratia, 2016, 20( 4): 259- 263. [44] ZHOU C, GAO F, ZHANG JY, et al. The role of tumor necrosis factor α invertase in insulin resistance and its related mechanism[J]. Res Integr Tradit Chin West Med, 2019, 11( 5): 270- 272, 275. DOI: 10.3969/j.issn.1674-4616.2019.05.016.周聪, 高峰, 张皎月, 等. 肿瘤坏死因子α转化酶在胰岛素抵抗中的作用及有关机制[J]. 中西医结合研究, 2019, 11( 5): 270- 272, 275. DOI: 10.3969/j.issn.1674-4616.2019.05.016. [45] BOGAN JS. Regulation of glucose transporter translocation in health and diabetes[J]. Annu Rev Biochem, 2012, 81: 507- 532. DOI: 10.1146/annurev-biochem-060109-094246. [46] SCHEITHAUER TPM, RAMPANELLI E, NIEUWDORP M, et al. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes[J]. Front immunol, 2020, 11: 571731. DOI: 10.3389/fimmu.2020.571731. [47] YANG LY, WU PW, YANG YN. Cytokine mediated β cell injury mechanism in type 2 diabetes[J]. Foreign Med Sci: Endocrinol, 2005, 25( 1): 13- 15 DOI: CNKI:SUN:GNFM.0.2005-01-005.杨立勇, 吴佩文, 杨永年. 细胞因子介导的2型糖尿病β细胞损伤机制[J]. 国外医学: 内分泌学分册, 2005, 25( 1): 13- 15. DOI: 10.3760/cma.j.issn.1673-4157.2005.01.005. [48] LEFRANÇAIS E, ORTIZ-MUÑOZ G, CAUDRILLIER A, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors[J]. Nature, 2017, 544( 7648): 105- 109. DOI: 10.1038/nature21706. [49] NOOR MT, MANORIA P. Immune dysfunction in cirrhosis[J]. J Clin Transl Hepatol, 2017, 5( 1): 50- 58. DOI: 10.14218/JCTH.2016.00056. [50] ŠESTAN M, MARINOVIĆ S, KAVAZOVIĆ I, et al. Virus-induced interferon-γ causes insulin resistance in skeletal muscle and derails glycemic control in obesity[J]. Immunity, 2018, 49( 1): 164- 177. e 6. DOI: 10.1016/j.immuni.2018.05.005. [51] ZHOU HY, PENG XY, HU J, et al. DsbA-L deficiency in T cells promotes diet-induced thermogenesis through suppressing IFN-γ production[J]. Nat Commun, 2021, 12( 1): 326. DOI: 10.1038/s41467-020-20665-4. [52] EIZIRIK DL, PASQUALI L, CNOP M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: Different pathways to failure[J]. Nat Rev Endocrinol, 2020, 16( 7): 349- 362. DOI: 10.1038/s41574-020-0355-7. [53] BAE HR, SHIN SK, HAN Y, et al. D-allulose ameliorates dysregulated macrophage function and mitochondrial NADH homeostasis, mitigating obesity-induced insulin resistance[J]. Nutrients, 2023, 15( 19): 4218. DOI: 10.3390/nu15194218. [54] SLAATS J, OEVER J TEN, van de VEERDONK FL, et al. IL-1β/IL-6/CRP and IL-18/ferritin: Distinct inflammatory programs in infections[J]. PLoS Pathog, 2016, 12( 12): e1005973. DOI: 10.1371/journal.ppat.1005973. [55] CHUNG W, PROMRAT K, WANDS J. Clinical implications, diagnosis, and management of diabetes in patients with chronic liver diseases[J]. World J Hepatol, 2020, 12( 9): 533- 557. DOI: 10.4254/wjh.v12.i9.533. [56] WANG LQ, LI YJ, XUE SJ, et al. The effect of entecavir combined with Fuzhenghuayu capsule in the treatment of decompensated cirrhosis patients with HBV infection and its influence on serum inflammatory factors[J]. Chin J Difficult Complicat Cases, 2020, 19( 10): 985- 989. DOI: 10.3969/j.issn.1671-6450.2020.10.004.王柳青, 李雅静, 薛素娟, 等. 恩替卡韦联合扶正化瘀胶囊治疗HBV感染失代偿期肝硬化患者的疗效及对血清炎性因子的影响[J]. 疑难病杂志, 2020, 19( 10): 985- 989. DOI: 10.3969/j.issn.1671-6450.2020.10.004. [57] ELKRIEF L, RAUTOU PE, SARIN S, et al. Diabetes mellitus in patients with cirrhosis: Clinical implications and management[J]. Liver Int, 2016, 36( 7): 936- 948. DOI: 10.1111/liv.13115. [58] ALFADUL H, SABICO S, AL-DAGHRI NM. The role of interleukin-1β in type 2 diabetes mellitus: A systematic review and meta-analysis[J]. Front Endocrinol, 2022, 13: 901616. DOI: 10.3389/fendo.2022.901616. [59] BIAN F, YANG XY, XU G, et al. CRP-induced NLRP3 inflammasome activation increases LDL transcytosis across endothelial cells[J]. Front Pharmacol, 2019, 10: 40. DOI: 10.3389/fphar.2019.00040. [60] YANG ML, QIU S, HE YR, et al. Genetic ablation of C-reactive protein gene confers resistance to obesity and insulin resistance in rats[J]. Diabetologia, 2021, 64( 5): 1169- 1183. DOI: 10.1007/s00125-021-05384-9. -

计量
- 文章访问数: 260
- HTML全文浏览量: 129
- PDF下载量: 25
- 被引次数: 0