中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胆汁酸受体TGR5介导的糖脂代谢在非酒精性脂肪性肝病中的作用

荀小霞 周铖 赵文霞

引用本文:
Citation:

胆汁酸受体TGR5介导的糖脂代谢在非酒精性脂肪性肝病中的作用

DOI: 10.3969/j.issn.1001-5256.2023.01.025
基金项目: 

国家自然科学基金面上项目 (81473651);

河南省中医药科学研究专项课题 (2018JDZX005);

河南省中医药科学研究专项课题 (2019JDZX2051);

河南省科技攻关计划项目 (202102310495);

河南省特色骨干学科中医学学科建设项目 (STG-ZYXKY-2020024)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:荀小霞负责撰写论文;周铖负责修改论文;赵文霞负责指导撰写文章、修改论文并最后定稿。
详细信息
    通信作者:

    赵文霞, zhao-wenxia@163.com (ORCID: 0000-0001-9070-4703)

Role of glucose and lipid metabolism mediated by the bile acid receptor Takeda G protein-coupled receptor 5 in nonalcoholic fatty liver disease

Research funding: 

National Natural Science Foundation of China (81473651)

Traditional Chinese Medicine Science Research Project of Henan Province (2018JDZX005)

Traditional Chinese Medicine Science Research Project of Henan Province (2019JDZX2051)

Key Science and Technology Project of Henan Province (202102310495)

TCM Discipline Construction Project of Characteristic Backbone Disciplines of Henan Province (STG-ZYXKY-2020024)

More Information
  • 摘要: 非酒精性脂肪性肝病(NAFLD)逐渐成为影响人类肝脏健康的主要原因,其发生发展与代谢功能障碍相关,糖脂代谢紊乱是其中的关键环节。武田G蛋白偶联受体5(TGR5)是胆汁酸的主要受体之一,在体内广泛表达,其介导的糖脂代谢在人体发挥重要作用。本文总结了TGR5在糖脂代谢中的作用和机制,以及基于TGR5治疗NAFLD的研究成果,以期对基础和临床研究提供参考。

     

  • 图  1  TGR5调节肠道L细胞分泌GLP-1的机制

    Figure  1.  Mechanism of TGR5 regulating GLP-1 secretion by intestinal L cells

    图  2  TGR5调节胰腺β细胞分泌胰岛素的机制

    Figure  2.  Mechanism of TGR5 regulating insulin secretion by pancreatic β cells

    图  3  骨骼肌内TGR5参与调节血糖代谢的机制

    Figure  3.  Mechanism of TGR5 in skeletal muscle involved in regulating blood glucose metabolism

    图  4  脂肪组织内TGR5参与调节脂质调节的机制

    Figure  4.  Mechanism of TGR5 involved in lipid regulation in adipose tissue

  • [1] RAZA S, RAJAK S, UPADHYAY A, et al. Current treatment paradigms and emerging therapies for NAFLD/NASH[J]. Front Biosci (Landmark Ed), 2021, 26(2): 206-237. DOI: 10.2741/4892.
    [2] LOOMBA R, SANYAL AJ. The global NAFLD epidemic[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(11): 686-690. DOI: 10.1038/nrgastro.2013.171.
    [3] YOUNOSSI ZM, KOENIG AB, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. DOI: 10.1002/hep.28431.
    [4] ESLAM M, SANYAL AJ, GEORGE J, et al. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology, 2020, 158(7): 1999-2014. e1. DOI: 10.1053/j.gastro.2019.11.312.
    [5] BECHMANN LP, KOCABAYOGLU P, SOWA JP, et al. Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis[J]. Hepatology, 2013, 57(4): 1394-1406. DOI: 10.1002/hep.26225.
    [6] ZHANG Y, LI JX, WANG YL. Role of bile acid metabolism and related receptors in the development and progression of non -alcoholic fatty liver disease[J]. J Clin Hepatol, 2020, 36(6): 1374-1377. DOI: 10.3969/j.issn.1001-5256.2020.06.040.

    张阳, 李军祥, 王允亮. 胆汁酸代谢及其受体在非酒精性脂肪性肝病发生发展中的作用[J]. 临床肝胆病杂志, 2020, 36(6): 1374-1377. DOI: 10.3969/j.issn.1001-5256.2020.06.040.
    [7] ZHAO HD, YANG F, ZHAN L. Research progress on pathogenesis of non-alcoholic fatty liver disease[J]. Acad J Chinese PLA Postgrad Med Sch, 2022, 43(3): 366-371. DOI: 10.3969/j.issn.2095-5227.2022.03.022.

    赵瀚东, 杨帆, 詹丽. 非酒精性脂肪性肝病发病机制研究进展[J]. 解放军医学院学报, 2022, 43(3): 366-371. DOI: 10.3969/j.issn.2095-5227.2022.03.022.
    [8] MARUYAMA T, MIYAMOTO Y, NAKAMURA T, et al. Identification of membrane-type receptor for bile acids (M-BAR)[J]. Biochem Biophys Res Commun, 2002, 298(5): 714-719. DOI: 10.1016/s0006-291x(02)02550-0.
    [9] HOLTER MM, CHIRIKJIAN MK, GOVANI VN, et al. TGR5 signaling in hepatic metabolic health[J]. Nutrients, 2020, 12(9): 2598. DOI: 10.3390/nu12092598.
    [10] POLS TW, NORIEGA LG, NOMURA M, et al. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation[J]. J Hepatol, 2011, 54(6): 1263-1272. DOI: 10.1016/j.jhep.2010.12.004.
    [11] KUMAR DP, RAJAGOPAL S, MAHAVADI S, et al. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells[J]. Biochem Biophys Res Commun, 2012, 427(3): 600-605. DOI: 10.1016/j.bbrc.2012.09.104.
    [12] HOLTER MM, CHIRIKJIAN MK, BRIERE DA, et al. Compound 18 improves glucose tolerance in a hepatocyte TGR5-dependent manner in mice[J]. Nutrients, 2020, 12(7): 2124. DOI: 10.3390/nu12072124.
    [13] SATO H, MACCHIARULO A, THOMAS C, et al. Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure-activity relationships, and molecular modeling studies[J]. J Med Chem, 2008, 51(6): 1831-1841. DOI: 10.1021/jm7015864.
    [14] NAKHI A, WONG HL, WELDY M, et al. Structural modifications that increase gut restriction of bile acid derivatives[J]. RSC Med Chem, 2021, 12(3): 394-405. DOI: 10.1039/d0md00425a.
    [15] THOMAS C, GIOIELLO A, NORIEGA L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis[J]. Cell Metab, 2009, 10(3): 167-177. DOI: 10.1016/j.cmet.2009.08.001.
    [16] CHAUDHARI SN, HARRIS DA, ALIAKBARIAN H, et al. Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects[J]. Nat Chem Biol, 2021, 17(1): 20-29. DOI: 10.1038/s41589-020-0604-z.
    [17] DRUCKER DJ. The biology of incretin hormones[J]. Cell Metab, 2006, 3(3): 153-165. DOI: 10.1016/j.cmet.2006.01.004.
    [18] PARKER HE, WALLIS K, LE ROUX CW, et al. Molecular mechanisms underlying bile acid-stimulated glucagon-like peptide-1 secretion[J]. Br J Pharmacol, 2012, 165(2): 414-423. DOI: 10.1111/j.1476-5381.2011.01561.x.
    [19] BRIGHTON CA, RIEVAJ J, KUHRE RE, et al. Bile acids trigger GLP-1 release predominantly by accessing basolaterally located G protein-coupled bile acid receptors[J]. Endocrinology, 2015, 156(11): 3961-3970. DOI: 10.1210/en.2015-1321.
    [20] GOLDSPINK DA, LU VB, BILLING LJ, et al. Mechanistic insights into the detection of free fatty and bile acids by ileal glucagon-like peptide-1 secreting cells[J]. Mol Metab, 2018, 7: 90-101. DOI: 10.1016/j.molmet.2017.11.005.
    [21] VETTORAZZI JF, RIBEIRO RA, BORCK PC, et al. The bile acid TUDCA increases glucose-induced insulin secretion via the cAMP/PKA pathway in pancreatic beta cells[J]. Metabolism, 2016, 65(3): 54-63. DOI: 10.1016/j.metabol.2015.10.021.
    [22] MACZEWSKY J, KAISER J, GRESCH A, et al. TGR5 activation promotes stimulus-secretion coupling of pancreatic β-cells via a PKA-dependent pathway[J]. Diabetes, 2019, 68(2): 324-336. DOI: 10.2337/db18-0315.
    [23] SRIKANTHAN P, KARLAMANGLA AS. Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National Health and Nutrition Examination Survey[J]. J Clin Endocrinol Metab, 2011, 96(9): 2898-2903. DOI: 10.1210/jc.2011-0435.
    [24] HAN TS, AL-GINDAN YY, GOVAN L, et al. Associations of BMI, waist circumference, body fat, and skeletal muscle with type 2 diabetes in adults[J]. Acta Diabetol, 2019, 56(8): 947-954. DOI: 10.1007/s00592-019-01328-3.
    [25] SASAKI T, KUBOYAMA A, MITA M, et al. The exercise-inducible bile acid receptor Tgr5 improves skeletal muscle function in mice[J]. J Biol Chem, 2018, 293(26): 10322-10332. DOI: 10.1074/jbc.RA118.002733.
    [26] HUANG S, MA S, NING M, et al. TGR5 agonist ameliorates insulin resistance in the skeletal muscles and improves glucose homeostasis in diabetic mice[J]. Metabolism, 2019, 99: 45-56. DOI: 10.1016/j.metabol.2019.07.003.
    [27] SASAKI T, WATANABE Y, KUBOYAMA A, et al. Muscle-specific TGR5 overexpression improves glucose clearance in glucose-intolerant mice[J]. J Biol Chem, 2021, 296: 100131. DOI: 10.1074/jbc.RA120.016203.
    [28] VASSILEVA G, HU W, HOOS L, et al. Gender-dependent effect of Gpbar1 genetic deletion on the metabolic profiles of diet-induced obese mice[J]. J Endocrinol, 2010, 205(3): 225-232. DOI: 10.1677/JOE-10-0009.
    [29] FINN PD, RODRIGUEZ D, KOHLER J, et al. Intestinal TGR5 agonism improves hepatic steatosis and insulin sensitivity in Western diet-fed mice[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 316(3): G412-G424. DOI: 10.1152/ajpgi.00300.2018.
    [30] CARINO A, CIPRIANI S, MARCHIANÒ S, et al. Gpbar1 agonism promotes a Pgc-1α-dependent browning of white adipose tissue and energy expenditure and reverses diet-induced steatohepatitis in mice[J]. Sci Rep, 2017, 7(1): 13689. DOI: 10.1038/s41598-017-13102-y.
    [31] CARINO A, MARCHIANÒ S, BIAGIOLI M, et al. Agonism for the bile acid receptor GPBAR1 reverses liver and vascular damage in a mouse model of steatohepatitis[J]. FASEB J, 2019, 33(2): 2809-2822. DOI: 10.1096/fj.201801373RR.
    [32] BERTHOLET AM, KAZAK L, CHOUCHANI ET, et al. Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling[J]. Cell Metab, 2017, 25(4): 811-822. e4. DOI: 10.1016/j.cmet.2017.03.002.
    [33] DONEPUDI AC, BOEHME S, LI F, et al. G-protein-coupled bile acid receptor plays a key role in bile acid metabolism and fasting-induced hepatic steatosis in mice[J]. Hepatology, 2017, 65(3): 813-827. DOI: 10.1002/hep.28707.
    [34] PELLICCIARI R, GIOIELLO A, MACCHIARULO A, et al. Discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity[J]. J Med Chem, 2009, 52(24): 7958-7961. DOI: 10.1021/jm901390p.
    [35] GENET C, STREHLE A, SCHMIDT C, et al. Structure-activity relationship study of betulinic acid, a novel and selective TGR5 agonist, and its synthetic derivatives: potential impact in diabetes[J]. J Med Chem, 2010, 53(1): 178-190. DOI: 10.1021/jm900872z.
    [36] HE B, JIANG J, SHI Z, et al. Pure total flavonoids from citrus attenuate non-alcoholic steatohepatitis via regulating the gut microbiota and bile acid metabolism in mice[J]. Biomed Pharmacother, 2021, 135: 111183. DOI: 10.1016/j.biopha.2020.111183.
    [37] XUE YN. Mechanism of scutellariae rhizoma coptidis on improving nonalcoholic fatty liver disease based on FXR/CYP7A1 pathway[D]. Yichang: China Three Gorges University, 2021.

    薛亚楠. 基于FXR/CYP7A1通路探究黄芩黄连药对改善非酒精性脂肪性肝病的作用机制[D]. 宜昌: 三峡大学, 2021.
    [38] ZHOU TT. Correlation between intestinal flora-cholic acid-liver metabolic axis and NAFLD and intervention effect of green brick tea[D]. Nanchang: Jiangxi University of Traditional Chinese Medicine, 2021.

    周婷婷. 肠道菌群-胆汁酸-肝代谢轴与NAFLD的相关性及青砖茶干预作用研究[D]. 南昌: 江西中医药大学, 2021.
    [39] DING L, YANG Q, ZHANG E, et al. Notoginsenoside Ft1 acts as a TGR5 agonist but FXR antagonist to alleviate high fat diet-induced obesity and insulin resistance in mice[J]. Acta Pharm Sin B, 2021, 11(6): 1541-1554. DOI: 10.1016/j.apsb.2021.03.038.
    [40] LI M, ZHOU W, DANG Y, et al. Berberine compounds improves hyperglycemia via microbiome mediated colonic TGR5-GLP pathway in db/db mice[J]. Biomed Pharmacother, 2020, 132: 110953. DOI: 10.1016/j.biopha.2020.110953.
    [41] LI T, HOLMSTROM SR, KIR S, et al. The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling[J]. Mol Endocrinol, 2011, 25(6): 1066-1071. DOI: 10.1210/me.2010-0460.
    [42] MASYUK TV, MASYUK AI, LORENZO PISARELLO M, et al. TGR5 contributes to hepatic cystogenesis in rodents with polycystic liver diseases through cyclic adenosine monophosphate/Gαs signaling[J]. Hepatology, 2017, 66(4): 1197-1218. DOI: 10.1002/hep.29284.
  • 加载中
图(4)
计量
  • 文章访问数:  1855
  • HTML全文浏览量:  1379
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-15
  • 录用日期:  2022-06-30
  • 出版日期:  2023-01-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回