中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肝脏TM6SF2特异性敲除促进非酒精性脂肪性肝病小鼠肝脏脂肪变性

张杰 马学峰 王艺奋 王孟轲 庄立琨 刘守胜 辛永宁

引用本文:
Citation:

肝脏TM6SF2特异性敲除促进非酒精性脂肪性肝病小鼠肝脏脂肪变性

DOI: 10.3969/j.issn.1001-5256.2021.11.024
基金项目: 

国家自然科学基金 (31770837)

详细信息
    通信作者:

    辛永宁,xinyongning@163.com

  • 中图分类号: R575.5

Hepatocyte-specific TM6SF2 knockout aggravates hepatic steatosis in mice with nonalcoholic fatty liver disease

Research funding: 

National Natural Science Foundation of China (31770837)

  • 摘要:   目的  构建TM6SF2肝细胞特异性敲除的小鼠模型,研究TM6SF2在非酒精性脂肪性肝病(NAFLD)发病中的作用。  方法  利用CRISPR/Cas9技术和Cre/LoxP策略构建稳定的TM6SF2肝细胞特异性敲除的小鼠模型。给予TM6SF2肝细胞特异性敲除小鼠和对照小鼠普通饮食或高脂饮食喂养16周,检测小鼠体质量、肝质量等一般情况,空腹血糖、胰岛素等糖代谢相关指标,以及血浆甘油三酯、胆固醇、肝脏甘油三酯等脂代谢相关的指标。符合正态分布的计量资料两组之间比较使用t检验。  结果  在高脂饮食条件下,TM6SF2肝细胞特异性敲除小鼠的肝质量[(2.235±0.175)g vs (1.258±0.106)g,t=4.789, P<0.01]和肝指数(4.970%± 0.298% vs 3.210%±0.094%,t=5.630, P<0.01)明显高于对照小鼠。同时,肝细胞TM6SF2基因缺失也会加重高脂饮食诱导的ALT水平异常[(62.517±1.526)U/L vs (25.991±5.947)U/L, t=5.949, P<0.01]。相较于对照组,在普通饮食和高脂饮食条件下,TM6SF2敲除小鼠血浆胰岛素水平升高[(37.203±0.836)mIU/L vs(34.835±0.426)mIU/L,t=2.520, P=0.025;(41.093±1.226)mIU/L vs(35.817 ±0.500)mIU/L,t=3.985, P=0.007],其他与糖代谢相关指标差异均无统计学意义(P值均>0.05)。在高脂饮食条件下,TM6SF2肝细胞特异性敲除小鼠血浆甘油三酯和胆固醇水平较对照组差异无统计学意义(P值均>0.05),而肝脏内甘油三酯水平较对照组升高[(23.969±0.978)mg/g vs(18.229±1.633) mg/g,t=3.015, P=0.024]。  结论  肝细胞特异性敲除TM6SF2可加重NAFLD小鼠肝脏脂质蓄积和肝损伤。

     

  • 图  1  TM6SF2-CKO小鼠构建策略

    图  2  TM6SF2-HKO小鼠基因型鉴定

    注:a, TM6SF2fl/fl鉴定, 电泳仅有一条332 bp条带,则为TM6SF2fl/fl纯合小鼠;仅有一条239 bp条带,则为TM6SF2-/-野生小鼠;若两条带都存在,则为TM6SF2fl/-杂合小鼠。b, Alb-Cre鉴定,若有一条279 bp条带,则为Cre转基小鼠。因此,42号为TM6SF2-HKO小鼠(TM6SF2fl/fl Alb-Cre),45号为TM6SF2-Flox小鼠(TM6SF2fl/fl)。

    图  3  TM6SF2-HKO和TM6SF2-Flox小鼠各组织TM6SF2表达水平

    图  4  四组小鼠肝脏HE染色(×200)

    注:a,TM6SF2-Flox-CD;b,TM6SF2-HKO-CD;c,TM6SF2-Flox-HFD;d,TM6SF2-HKO-HFD。

    图  5  四组小鼠油红O染色(×200)

    注:a,TM6SF2-Flox-CD;b,TM6SF2-HKO-CD;c,TM6SF2-Flox-HFD;d,TM6SF2-HKO-HFD。

    表  1  基因型鉴定对应的引物序列

    引物 序列(5′→3′)
    TM6SF2-F CAGTGTCAAGATTAGTGTTGGC
    TM6SF2-R CACCGAAGTTATACAGTCTGAT
    Cre-F ATATCTCACGTACTGACGGTGG
    Cre-R CCTTAGCGCCGTAAATCAATC
    下载: 导出CSV

    表  2  TM6SF2-HKO对小鼠肝质量、肝酶等指标影响

    指标 TM6SF2-Flox-CD(n=8) TM6SF2-HKO-CD(n=8) t P TM6SF2-Flox- HFD(n=4) TM6SF2-HKO- HFD (n=4) t P
    体质量(g) 25.996±0.483 27.150±0.545 1.585 0.135 39.088±2.436 44.830±0.937 2.200 0.070
    肝质量(g) 1.115±0.032 1.117±0.027 0.417 0.967 1.258±0.106 2.235±0.175 4.789 0.003
    肝指数(%) 4.284±0.076 4.111±0.050 1.900 0.078 3.210±0.094 4.970±0.298 5.630 0.001
    血浆ALT (U/L) 15.014±2.670 10.377±1.433 1.530 0.148 25.991±5.947 62.517±1.526 5.949 0.001
    血浆AST (U/L) 30.343±1.723 26.525±1.649 1.601 0.132 26.645±2.576 33.485±3.075 1.705 0.139
    注:CD,普通饮食;HFD,高脂饮食。
    下载: 导出CSV

    表  3  肝细胞TM6SF2缺失对小鼠糖代谢影响

    指标 TM6SF2-Flox- CD(n=8) TM6SF2-HKO- CD(n=8) t P TM6SF2-Flox- HFD(n=4) TM6SF2-HKO- HFD(n=4) t P
    空腹血糖(mmol/L) 7.495±0.571 7.347±0.403 0.211 0.836 9.877±1.017 9.489±0.621 0.325 0.756
    胰岛素(mIU/L) 34.835±0.426 37.203±0.836 2.520 0.025 35.817±0.500 41.093±1.226 3.985 0.007
    OGTT-0 min-血糖(mmol/L) 6.425±0.373 5.875±0.653 0.731 0.477 9.600±0.402 10.000±1.042 0.358 0.732
    OGTT-30 min-血糖(mmol/L) 15.200±0.645 14.980±0.666 0.243 0.812 21.830±2.862 24.38±1.518 0.787 0.461
    OGTT-60 min-血糖(mmol/L) 9.275±0.609 9.263±0.368 0.018 0.986 22.080±3.726 20.050±1.599 0.500 0.635
    OGTT-120 min-血糖(mmol/L) 5.900±0.403 6.438±0.455 0.884 0.392 15.080±1.805 12.630±1.278 1.108 0.310
    OGTT曲线下面积(mol·min/L) 1.147±0.043 1.147±0.053 0.008 0.994 2.162±0.141 2.244±0.308 0.243 0.817
    胰岛素抵抗指数(mmol·mIU/L2) 11.608±0.921 12.134±0.689 0.458 0.654 15.694±1.528 17.332±1.227 0.836 0.435
    下载: 导出CSV

    表  4  TM6SF2-HKO对小鼠脂代谢影响

    指标 TM6SF2-Flox- CD(n=8) TM6SF2-HKO- CD(n=8) t值 P TM6SF2-Flox- HFD(n=4) TM6SF2-HKO- HFD(n=4) t P
    血浆TC(mmol/L) 1.182±0.235 1.159±0.191 0.772 0.940 2.203±0.661 2.337±0.681 0.940 0.383
    血浆TG(mmol/L) 0.874±0.048 0.724±0.058 2.003 0.065 1.046±0.213 0.914±0.010 0.563 0.594
    肝组织TG(mg/g) 11.935±0.597 13.240±0.658 1.467 0.164 18.229±1.633 23.969±0.978 3.015 0.024
    下载: 导出CSV
  • [1] COBBINA E, AKHLAGHI F. Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters[J]. Drug Metab Rev, 2017, 49(2): 197-211. DOI: 10.1080/03602532.2017.1293683.
    [2] WU TF, LIAO XH, ZHONG BH. Epidemiology of nonalcoholic fatty liver disease in some regions of China[J]. J Clin Hepatol, 2020, 36(6): 1370-1373. DOI: 10.3969/j.issn.1001-5256.2020.06.039.

    吴挺丰, 廖献花, 钟碧慧. 中国部分地区非酒精性脂肪肝病的流行情况[J]. 临床肝胆病杂志, 2020, 36(6): 1370-1373. DOI: 10.3969/j.issn.1001-5256.2020.06.039.
    [3] YOUNOSSI Z, ANSTEE QM, MARIETTI M, et al. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 11-20. DOI: 10.1038/nrgastro.2017.109.
    [4] BYRNE CD, TARGHER G. EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease: Is universal screening appropriate?[J]. Diabetologia, 2016, 59(6): 1141-1144. DOI: 10.1007/s00125-016-3910-y.
    [5] LEUNG C, RIVERA L, FURNESS JB, et al. The role of the gut microbiota in NAFLD[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(7): 412-425. DOI: 10.1038/nrgastro.2016.85.
    [6] KOZLITINA J, SMAGRIS E, STENDER S, et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease[J]. Nat Genet, 2014, 46(4): 352-356. DOI: 10.1038/ng.2901.
    [7] SOOKOIAN S, CASTAÑO GO, SCIAN R, et al. Genetic variation in transmembrane 6 superfamily member 2 and the risk of nonalcoholic fatty liver disease and histological disease severity[J]. Hepatology, 2015, 61(2): 515-525. DOI: 10.1002/hep.27556.
    [8] KRAWCZYK M, RAU M, SCHATTENBERG JM, et al. Combined effects of the PNPLA3 rs738409, TM6SF2 rs58542926, and MBOAT7 rs641738 variants on NAFLD severity: A multicenter biopsy-based study[J]. J Lipid Res, 2017, 58(1): 247-255. DOI: 10.1194/jlr.P067454.
    [9] GOFFREDO M, CAPRIO S, FELDSTEIN AE, et al. Role of TM6SF2 rs58542926 in the pathogenesis of nonalcoholic pediatric fatty liver disease: A multiethnic study[J]. Hepatology, 2016, 63(1): 117-125. DOI: 10.1002/hep.28283.
    [10] ANDRIKOPOULOS S, BLAIR AR, DELUCA N, et al. Evaluating the glucose tolerance test in mice[J]. Am J Physiol Endocrinol Metab, 2008, 295(6): E1323-1332. DOI: 10.1152/ajpendo.90617.2008.
    [11] MA Y, YU L, PAN S, et al. CRISPR/Cas9-mediated targeting of the Rosa26 locus produces Cre reporter rat strains for monitoring Cre-loxP-mediated lineage tracing[J]. FEBS J, 2017, 284(19): 3262-3277. DOI: 10.1111/febs.14188.
    [12] FAN Y, LU H, GUO Y, et al. Hepatic Transmembrane 6 superfamily member 2 regulates cholesterol metabolism in mice[J]. Gastroenterology, 2016, 150(5): 1208-1218. DOI: 10.1053/j.gastro.2016.01.005.
    [13] GUPTA D, BHATTACHARJEE O, MANDAL D, et al. CRISPR-Cas9 system: A new-fangled dawn in gene editing[J]. Life Sci, 2019, 232: 116636. DOI: 10.1016/j.lfs.2019.116636.
    [14] HRYHOROWICZ M, LIPIŃSKI D, ZEYLAND J, et al. CRISPR/Cas9 immune system as a tool for genome engineering[J]. Arch Immunol Ther Exp (Warsz), 2017, 65(3): 233-240. DOI: 10.1007/s00005-016-0427-5.
    [15] YANG J, ZHU D, JU B, et al. Hepatoprotective effects of Gentianella turkestanerum extracts on acute liver injury induced by carbon tetrachloride in mice[J]. Am J Transl Res, 2017, 9(2): 569-579.
    [16] HWANG YP, CHOI JH, JEONG HG. Protective effect of the Aralia continentalis root extract against carbon tetrachloride-induced hepatotoxicity in mice[J]. Food Chem Toxicol, 2009, 47(1): 75-81. DOI: 10.1016/j.fct.2008.10.011.
    [17] Diagnosis and Treatment Center of Hepatology of South China Alliance of TCM, National Administration of Traditional Chinese Medicine. Diagnosis and treatment scheme of Ganpi (non-alcoholic steatohepatitis)[J/CD]. Chin J Liver Dis: Electronic Edition, 2021, 13(1): 1-9. DOI: 10.3969/j.issn.1674-7380.2021.01.001

    国家中医药管理局华南区中医肝病诊疗中心联盟. 肝癖(非酒精性脂肪性肝炎)诊疗方案[J/CD]. 中国肝脏病杂志(电子版), 2021, 13(1): 1-9. DOI: 10.3969/j.issn.1674-7380.2021.01.001
    [18] PETERSEN MC, VATNER DF, SHULMAN GI. Regulation of hepatic glucose metabolism in health and disease[J]. Nat Rev Endocrinol, 2017, 13(10): 572-587. DOI: 10.1038/nrendo.2017.80.
    [19] WATT MJ, MIOTTO PM, de NARDO W, et al. The liver as an endocrine organ-linking nafld and insulin resistance[J]. Endocr Rev, 2019, 40(5): 1367-1393. DOI: 10.1210/er.2019-00034.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  1256
  • HTML全文浏览量:  359
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-26
  • 录用日期:  2021-06-04
  • 出版日期:  2021-11-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回