中文English
ISSN 1001-5256
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沉默调节蛋白6在肝脏疾病中的作用及其机制

方欢 钟晓琳

方欢, 钟晓琳. 沉默调节蛋白6在肝脏疾病中的作用及其机制[J]. 临床肝胆病杂志, 2021, 37(8): 1975-1978. DOI: 10.3969/j.issn.1001-5256.2021.08.050
引用本文: 方欢, 钟晓琳. 沉默调节蛋白6在肝脏疾病中的作用及其机制[J]. 临床肝胆病杂志, 2021, 37(8): 1975-1978. DOI: 10.3969/j.issn.1001-5256.2021.08.050
FANG H, ZHONG XL. Role and mechanism of SIRT6 in liver diseases[J]. J Clin Hepatol, 2021, 37(8): 1975-1978 DOI: 10.3969/j.issn.1001-5256.2021.08.050
Citation: FANG H, ZHONG XL. Role and mechanism of SIRT6 in liver diseases[J]. J Clin Hepatol, 2021, 37(8): 1975-1978 DOI: 10.3969/j.issn.1001-5256.2021.08.050

沉默调节蛋白6在肝脏疾病中的作用及其机制

DOI: 10.3969/j.issn.1001-5256.2021.08.050
基金项目: 

四川省科技厅基金项目 2020YJ0190

王宝恩肝纤维化研究基金项目 20200520

详细信息
    通讯作者:

    钟晓琳,34893230@qq.com

  • 中图分类号: R575; R977.6

Role and mechanism of SIRT6 in liver diseases

Funds: 

Science and Technology Department Foundation of Sichuan Province 2020YJ0190

WBE Liver Fibrosis Foundation 20200520

  • 摘要: 沉默调节蛋白6(SIRT6)具有去乙酰化酶、单ADP核糖基转移酶以及去脂肪酰化酶等多种功能, 在调控多种生理及病理过程中发挥重要作用。概述了SIRT6的结构及生物学功能,详细介绍了SIRT6在病毒性肝炎、非酒精性脂肪性肝病、酒精性脂肪性肝病、肝硬化、肝癌等不同类型的肝脏疾病中的研究进展及相关作用分子机制。了解SIRT6在肝脏疾病中的作用, 可能为肝病的治疗提供新思路及治疗靶点。

     

  • [1] ZHONG L, D'URSO A, TOIBER D, et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha[J]. Cell, 2010, 140(2): 280-293. DOI: 10.1016/j.cell.2009.12.041.
    [2] KIM HG, HUANG M, XIN Y, et al. The epigenetic regulator SIRT6 protects the liver from alcohol-induced tissue injury by reducing oxidative stress in mice[J]. J Hepatol, 2019, 71(5): 960-969. DOI: 10.1016/j.jhep.2019.06.019.
    [3] KIM HS, XIAO C, WANG RH, et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis[J]. Cell Metab, 2010, 12(3): 224-236. DOI: 10.1016/j.cmet.2010.06.009.
    [4] SEBASTIÁN C, ZWAANS BM, SILBERMAN DM, et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism[J]. Cell, 2012, 151(6): 1185-1199. DOI: 10.1016/j.cell.2012.10.047.
    [5] MOSTOSLAVSKY R, CHUA KF, LOMBARD DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6[J]. Cell, 2006, 124(2): 315-329. DOI: 10.1016/j.cell.2005.11.044.
    [6] ELHANATI S, KANFI Y, VARVAK A, et al. Multiple regulatory layers of SREBP1/2 by SIRT6[J]. Cell Rep, 2013, 4(5): 905-912. DOI: 10.1016/j.celrep.2013.08.006.
    [7] BLANDER G, GUARENTE L. The Sir2 family of protein deacetylases[J]. Annu Rev Biochem, 2004, 73: 417-435. DOI: 10.1146/annurev.biochem.73.011303.073651.
    [8] FLICK F, LUSCHER B. Regulation of sirtuin function by posttranslational modifications[J]. Front Pharmacol, 2012, 3: 29. DOI: 10.3389/fphar.2012.00029.
    [9] HERSKOVITS AZ, GUARENTE L. Sirtuin deacetylases in neurodegenerative diseases of aging[J]. Cell Res, 2013, 23(6): 746-758. DOI: 10.1038/cr.2013.70.
    [10] MAHLKNECHT U, HO AD, VOELTER-MAHLKNECHT S. Chromosomal organization and fluorescence in situ hybridization of the human Sirtuin 6 gene[J]. Int J Oncol, 2006, 28(2): 447-456.
    [11] PAN PW, FELDMAN JL, DEVRIES MK, et al. Structure and biochemical functions of SIRT6[J]. J Biol Chem, 2011, 286(16): 14575-14587. DOI: 10.1074/jbc.M111.218990.
    [12] JIANG H, KHAN S, WANG Y, et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine[J]. Nature, 2013, 496(7443): 110-113. DOI: 10.1038/nature12038.
    [13] GUO L, WANG D, OUYANG X, et al. Recent advances in HBV reactivation research[J]. Biomed Res Int, 2018, 2018: 2931402. DOI: 10.1155/2018/2931402.
    [14] DU L, MA Y, LIU M, et al. Peroxisome proliferators activated receptor (PPAR) agonists activate hepatitis B virus replication in vivo[J]. Virol J, 2017, 14(1): 96. DOI: 10.1186/s12985-017-0765-x.
    [15] XIE BJ, GUO JJ, ZHANG Y, et al. Peroxisome proliferator-activated receptor alpha regulates HBV minichromosome remodeling and viral replication[J]. J Chongqing Med Univ, 2017, 42(7): 795-802. DOI: 10.13406./j.cnki.cyxb.001349.

    谢冰珏, 郭进军, 张燕, 等. 过氧化物酶体增殖物激活受体α(PPARα)调控HBV微染色体重塑与病毒复制[J]. 重庆医科大学学报, 2017, 42(7): 795-802. DOI: 10.13406./j.cnki.cyxb.001349.
    [16] GUIDOTTI LG, EGGERS CM, RANEY AK, et al. In vivo regulation of hepatitis B virus replication by peroxisome proliferators[J]. J Virol, 1999, 73(12): 10377-10386. DOI: 10.1128/JVI.73.12.10377-10386.1999.
    [17] WU XT, YANG J, WANG XJ, et al. Anti-HBV effect identification of antisense oligodeoxynucleotide targeting PPARα[J]. Lett Biotech, 2011, 22(6): 773-776. DOI: 10.3969/j.issn.1009-0002.2011.06.005.

    吴小桃, 杨静, 王学军, 等. 抑制核转录因子PPARα的反义寡核苷酸的抗乙型肝炎病毒活性研究[J]. 生物技术通讯, 2011, 22(6): 773-776. DOI: 10.3969/j.issn.1009-0002.2011.06.005.
    [18] JIANG H, CHENG ST, REN JH, et al. SIRT6 inhibitor, OSS_128167 restricts hepatitis B virus transcription and replication through targeting transcription factor peroxisome proliferator-activated receptors α[J]. Front Pharmacol, 2019, 10: 1270. DOI: 10.3389/fphar.2019.01270.
    [19] JIANG H. SIRT6 inhibitor, OSS_128167 effect on hepatitis B virus replication and mechanism of research[D]. Chongqing: Chongqing Medical University, 2020.

    姜慧. SIRT6抑制剂, OSS_128167对HBV复制的影响及机制研究[D]. 重庆: 重庆医科大学, 2020.
    [20] YKI-JARVINEN H. Diagnosis of nonalcoholic fatty liver disease (NAFLD)[J]. Duodecim, 2016, 132(22): 2099-2106.
    [21] BUZZETTI E, PINZANI M, TSOCHATZIS EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism, 2016, 65(8): 1038-1048. DOI: 10.1016/j.metabol.2015.12.012.
    [22] ZHOU Q, SU J, JI MY. Progress in the treatment of nonalcoholic fatty liver disease[J]. China Med Herald, 2020, 17(6): 26-29. DOI: 10.3969/j.issn.1000-484X.2019.13.023.

    周谦, 苏娟, 季梦遥. 非酒精性脂肪性肝病的治疗研究进展[J]. 中国医药导报, 2020, 17(6): 26-29. DOI: 10.3969/j.issn.1000-484X.2019.13.023.
    [23] KANFI Y, NAIMAN S, AMIR G, et al. The sirtuin SIRT6 regulates lifespan in male mice[J]. Nature, 2012, 483(7388): 218-221. DOI: 10.1038/nature10815.
    [24] PENROSE H, HELLER S, CABLE C, et al. Epidermal growth factor receptor mediated proliferation depends on increased lipid droplet density regulated via a negative regulatory loop with FOXO3/Sirtuin6[J]. Biochem Biophys Res Commun, 2016, 469(3): 370-376. DOI: 10.1016/j.bbrc.2015.11.119.
    [25] XIAO C, KIM HS, LAHUSEN T, et al. SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice[J]. J Biol Chem, 2010, 285(47): 36776-36784. DOI: 10.1074/jbc.M110.168039.
    [26] XIONG X, WANG G, TAO R, et al. Sirtuin 6 regulates glucose-stimulated insulin secretion in mouse pancreatic beta cells[J]. Diabetologia, 2016, 59(1): 151-160. DOI: 10.1007/s00125-015-3778-2.
    [27] XIONG X, SUN X, WANG Q, et al. SIRT6 protects against palmitate-induced pancreatic β-cell dysfunction and apoptosis[J]. J Endocrinol, 2016, 231(2): 159-165. DOI: 10.1530/JOE-16-0317.
    [28] CALIGIURI A, GENTILINI A, MARRA F. Molecular pathogenesis of NASH[J]. Int J Mol Sci, 2016, 17(9)DOI: 10.3390/ijms17091575.
    [29] ZHANG N, LI Z, MU W, et al. Calorie restriction-induced SIRT6 activation delays aging by suppressing NF-κB signaling[J]. Cell Cycle, 2016, 15(7): 1009-1018. DOI: 10.1080/15384101.2016.1152427.
    [30] XIAO C, WANG RH, LAHUSEN TJ, et al. Progression of chronic liver inflammation and fibrosis driven by activation of c-JUN signaling in Sirt6 mutant mice[J]. J Biol Chem, 2012, 287(50): 41903-41913. DOI: 10.1074/jbc.M112.415182.
    [31] DOU HX, ZHANG DJ. Advances in the molecular pathogenesis of alcoholic liver disease[J]. Genom Appl Biol, 2016, 35(7): 1643-1647. DOI: 10.13417/j.gab.035.001643.

    窦慧馨, 张得钧. 酒精性肝病分子发病机制研究进展[J]. 基因组学与应用生物学, 2016, 35(7): 1643-1647. DOI: 10.13417/j.gab.035.001643.
    [32] KOURKOUMPETIS T, SOOD G. Pathogenesis of alcoholic liver disease: An update[J]. Clin Liver Dis, 2019, 23(1): 71-80. DOI: 10.1016/j.cld.2018.09.006.
    [33] ZENG T, ZHANG CL, SONG FY, et al. CMZ reversed chronic ethanol-induced disturbance of PPAR-α possibly by suppressing oxidative stress and PGC-1α acetylation, and activating the MAPK and GSK3β pathway[J]. PLoS One, 2014, 9(6): e98658. DOI: 10.1371/journal.pone.0098658.
    [34] XIN SL. SIRT6 alleviates nonalcoholic fatty liver disease by up-regulating PPAR-α pathway and reversing senescence of hepatocytes[D]. Wuhan: Huazhong University of Science and Technology, 2019.

    辛晟梁. SIRT6通过上调PPAR-α及阻遏肝细胞衰老改善非酒精性脂肪性肝病[D]. 武汉: 华中科技大学, 2019.
    [35] HIGASHI T, FRIEDMAN SL, HOSHIDA Y. Hepatic stellate cells as key target in liver fibrosis[J]. Adv Drug Deliv Rev, 2017, 121: 27-42. DOI: 10.1016/j.addr.2017.05.007.
    [36] CAJA L, DITURI F, MANCARELLA S, et al. TGF-β and the tissue microenvironment: Relevance in fibrosis and cancer[J]. Int J Mol Sci, 2018, 19(5): 1294. DOI: 10.3390/ijms19051294.
    [37] ZHANG Y, CUI Y, WANG XL, et al. PPARα/γ agonists and antagonists differently affect hepatic lipid metabolism, oxidative stress and inflammatory cytokine production in steatohepatitic rats[J]. Cytokine, 2015, 75(1): 127-135. DOI: 10.1016/j.cyto.2015.05.031.
    [38] ZHANG J, LI Y, LIU Q, et al. Sirt6 alleviated liver fibrosis by deacetylating conserved lysine 54 on Smad2 in hepatic stellate cells[J]. Hepatology, 2021, 73(3): 1140-1157. DOI: 10.1002/hep.31418.
    [39] ZHONG X, HUANG M, KIM HG, et al. SIRT6 protects against liver fibrosis by deacetylation and suppression of SMAD3 in hepatic stellate cells[J]. Cell Mol Gastroenterol Hepatol, 2020, 10(2): 341-364. DOI: 10.1016/j.jcmgh.2020.04.005.
    [40] MAITY S, MUHAMED J, SARIKHANI M, et al. Sirtuin 6 deficiency transcriptionally up-regulates TGF-β signaling and induces fibrosis in mice[J]. J Biol Chem, 2020, 295(2): 415-434. DOI: 10.1074/jbc.RA118.007212.
    [41] TIAN K, CHEN P, LIU Z, et al. Sirtuin 6 inhibits epithelial to mesenchymal transition during idiopathic pulmonary fibrosis via inactivating TGF-β1/Smad3 signaling[J]. Oncotarget, 2017, 8(37): 61011-61024. DOI: 10.18632/oncotarget.17723.
    [42] ZHANG Q, TU W, TIAN K, et al. Sirtuin 6 inhibits myofibroblast differentiation via inactivating transforming growth factor-β1/Smad2 and nuclear factor-κB signaling pathways in human fetal lung fibroblasts[J]. J Cell Biochem, 2019, 120(1): 93-104. DOI: 10.1002/jcb.27128.
    [43] HEIMBACH JK, KULIK LM, FINN RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma[J]. Hepatology, 2018, 67(1): 358-380. DOI: 10.1002/hep.29086.
    [44] ZHAO Y, ZHANG YH. Immunosuppression in hepatocellular carcinoma and immunomodulation in treatment[J]. Chin J Immunol, 2019, 35(13): 1643-1645, 1650. DOI: 10.3969/j.issn.1000-484X.2019.13.023.

    赵艳, 张永宏. 肝细胞癌中的免疫抑制与治疗中的免疫调节[J]. 中国免疫学杂志, 2019, 35(13): 1643-1645, 1650. DOI: 10.3969/j.issn.1000-484X.2019.13.023.
    [45] WAHID B, ALI A, RAFIQUE S, et al. New insights into the epigenetics of hepatocellular carcinoma[J]. Biomed Res Int, 2017, 2017: 1609575. DOI: 10.1155/2017/1609575.
    [46] de SOUZA C, CHATTERJI BP. HDAC Inhibitors as novel anti-cancer therapeutics[J]. Recent Pat Anticancer Drug Discov, 2015, 10(2): 145-162. DOI: 10.2174/1574892810666150317144511.
    [47] MIN L, JI Y, BAKIRI L, et al. Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin[J]. Nat Cell Biol, 2012, 14(11): 1203-1211. DOI: 10.1038/ncb2590.
    [48] HUANG Z, ZHAO J, DENG W, et al. Identification of a cellularly active SIRT6 allosteric activator[J]. Nat Chem Biol, 2018, 14(12): 1118-1126. DOI: 10.1038/s41589-018-0150-0.
    [49] van METER M, MAO Z, GORBUNOVA V, et al. SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells[J]. Cell Cycle, 2011, 10(18): 3153-3158. DOI: 10.4161/cc.10.18.17435.
    [50] MING M, HAN W, ZHAO B, et al. SIRT6 promotes COX-2 expression and acts as an oncogene in skin cancer[J]. Cancer Res, 2014, 74(20): 5925-5933. DOI: 10.1158/0008-5472.CAN-14-1308.
    [51] HAN LL, JIA L, WU F, et al. Sirtuin6 (SIRT6) promotes the EMT of hepatocellular carcinoma by stimulating autophagic degradation of E-cadherin[J]. Mol Cancer Res, 2019, 17(11): 2267-2280. DOI: 10.1158/1541-7786.MCR-19-0321.
    [52] XIA YQ, HUA RJ, JUAN C, et al. SIRT6 depletion sensitizes human hepatoma cells to chemotherapeutics by downregulating MDR1 expression[J]. Front Pharmacol, 2018, 9: 194. DOI: 10.3389/fphar.2018.00194.
  • 加载中
计量
  • 文章访问数:  54
  • HTML全文浏览量:  19
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-04
  • 修回日期:  2021-02-10
  • 刊出日期:  2021-08-16
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回