中文English
ISSN 1001-5256
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脾酪氨酸激酶在肝脏疾病中的作用机制

乐滢玉 张荣臻 吴聪 肖伟松 覃小宾 曾胜澜 毛德文

乐滢玉, 张荣臻, 吴聪, 等. 脾酪氨酸激酶在肝脏疾病中的作用机制[J]. 临床肝胆病杂志, 2021, 37(8): 1970-1974. DOI: 10.3969/j.issn.1001-5256.2021.08.049
引用本文: 乐滢玉, 张荣臻, 吴聪, 等. 脾酪氨酸激酶在肝脏疾病中的作用机制[J]. 临床肝胆病杂志, 2021, 37(8): 1970-1974. DOI: 10.3969/j.issn.1001-5256.2021.08.049
LE YY, ZHANG RZ, WU C, et al. Mechanism of action of spleen tyrosine kinase in liver diseases[J]. J Clin Hepatol, 2021, 37(8): 1970-1974 DOI: 10.3969/j.issn.1001-5256.2021.08.049
Citation: LE YY, ZHANG RZ, WU C, et al. Mechanism of action of spleen tyrosine kinase in liver diseases[J]. J Clin Hepatol, 2021, 37(8): 1970-1974 DOI: 10.3969/j.issn.1001-5256.2021.08.049

脾酪氨酸激酶在肝脏疾病中的作用机制

DOI: 10.3969/j.issn.1001-5256.2021.08.049
基金项目: 

国家自然科学基金面上项目 81774236

国家自然科学基金 81960841

广西自然科学基金 2018GXNSFAA281096

广西科技计划项目-广西科技基地和人才专项 GK AD17129001

详细信息
    通讯作者:

    毛德文,mdwboshi2005@163.com

  • 中图分类号: R575

Mechanism of action of spleen tyrosine kinase in liver diseases

Funds: 

General Project of National Natural Science Foundation of China 81774236

National Natural Science Foundation of China 81960841

Natural Science Foundation of Guangxi Province 2018GXNSFAA281096

Guangxi Science and Technology Program Project - Guangxi Science and Technology Base and Talent Special Project GK AD17129001

  • 摘要: 脾酪氨酸激酶(Syk)是一种在大多数造血细胞和非造血细胞中表达的非受体酪氨酸激酶,在免疫和非免疫生物学反应中都起着至关重要的作用。Syk通过免疫受体酪氨酸激活基序(ITAM)依赖性的信号通路和ITAM半依赖性的信号通路等介导多种细胞反应。已有研究表明,Syk在肝实质细胞和非实质细胞中表达,并与肝纤维化、病毒性肝炎、酒精性肝病、非酒精性脂肪性肝炎和肝细胞癌等肝脏疾病的发病机制及防治密切相关。对Syk在慢性肝脏疾病中的作用特点及调控机制进行归纳总结,以期为肝脏疾病的治疗提供思路和依据。

     

  • [1] LOWELL CA. Src-family and Syk kinases in activating and inhibitory pathways in innate immune cells: Signaling cross talk[J]. Cold Spring Harb Perspect Biol, 2011, 3(3): a002352. DOI: 10.1101/cshperspect.a002352.
    [2] PAMUK ON, TSOKOS GC. Spleen tyrosine kinase inhibition in the treatment of autoimmune, allergic and autoinflammatory diseases[J]. Arthritis Res Ther, 2010, 12(6): 222. DOI: 10.1186/ar3198.
    [3] SCHWEIGHOFFER E, NYS J, VANES L, et al. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK[J]. J Exp Med, 2017, 214(5): 1269-1280. DOI: 10.1084/jem.20161117.
    [4] KELLER B, STUMPF I, STROHMEIER V, et al. High SYK expression drives constitutive activation of CD21 low B cells[J]. J Immunol, 2017, 198(11): 4285-4292. DOI: 10.4049/jimmunol.1700079.
    [5] YANAGI S, INATOME R, TAKANO T, et al. Syk expression and novel function in a wide variety of tissues[J]. Biochem Biophys Res Commun, 2001, 288(3): 495-498. DOI: 10.1006/bbrc.2001.5788.
    [6] QU C, ZHENG D, LI S, et al. Tyrosine kinase SYK is a potential therapeutic target for liver fibrosis[J]. Hepatology, 2018, 68(3): 1125-1139. DOI: 10.1002/hep.29881.
    [7] ZHANG Y, OH H, BURTON RA, et al. Tyr130 phosphorylation triggers Syk release from antigen receptor by long-distance conformational uncoupling[J]. Proc Natl Acad Sci U S A, 2008, 105(33): 11760-11765. DOI: 10.1073/pnas.0708583105.
    [8] SADA K, TAKANO T, YANAGI S, et al. Structure and function of Syk protein-tyrosine kinase[J]. J Biochem, 2001, 130(2): 177-186. DOI: 10.1093/oxfordjournals.jbchem.a002970.
    [9] SLOMIANY BL, SLOMIANY A. Syk: A new target for attenuation of Helicobacter pylori-induced gastric mucosal inflammatory responses[J]. Inflammopharmacology, 2019, 27(2): 203-211. DOI: 10.1007/s10787-019-00577-6.
    [10] PAROLA M, PINZANI M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues[J]. Mol Aspects Med, 2019, 65: 37-55. DOI: 10.1016/j.mam.2018.09.002.
    [11] NORDSTRÖM A, BERGMAN J, BJÖRK S, et al. A multiple risk factor program is associated with decreased risk of cardiovascular disease in 70-year-olds: A cohort study from Sweden[J]. PLoS Med, 2020, 17(6): e1003135. DOI: 10.1371/journal.pmed.1003135.
    [12] CIGROVSKI BERKOVIC M, VIROVIC-JUKIC L, BILIC-CURCIC I, et al. Post-transplant diabetes mellitus and preexisting liver disease - a bidirectional relationship affecting treatment and management[J]. World J Gastroenterol, 2020, 26(21): 2740-2757. DOI: 10.3748/wjg.v26.i21.2740.
    [13] GIESECK RL 3rd, WILSON MS, WYNN TA. Type 2 immunity in tissue repair and fibrosis[J]. Nat Rev Immunol, 2018, 18(1): 62-76. DOI: 10.1038/nri.2017.90.
    [14] TSUCHIDA T, FRIEDMAN SL. Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 397-411. DOI: 10.1038/nrgastro.2017.38.
    [15] NISHIKAWA K, OSAWA Y, KIMURA K. Wnt/β-catenin signaling as a potential target for the treatment of liver cirrhosis using antifibrotic drugs[J]. Int J Mol Sci, 2018, 19(10): 3103. DOI: 10.3390/ijms19103103.
    [16] KISSELEVA T. The origin of fibrogenic myofibroblasts in fibrotic liver[J]. Hepatology, 2017, 65(3): 1039-1043. DOI: 10.1002/hep.28948.
    [17] MANN J, MANN DA. Transcriptional regulation of hepatic stellate cells[J]. Adv Drug Deliv Rev, 2009, 61(7-8): 497-512. DOI: 10.1016/j.addr.2009.03.011.
    [18] AOUAR B, KOVAROVA D, LETARD S, et al. Dual role of the tyrosine kinase syk in regulation of Toll-like receptor signaling in plasmacytoid dendritic cells[J]. PLoS One, 2016, 11(6): e0156063. DOI: 10.1371/journal.pone.0156063.
    [19] ZEKRI AR, HAFEZ MM, BAHNASSY AA, et al. Genetic profile of Egyptian hepatocellular-carcinoma associated with hepatitis C virus Genotype 4 by 15 K cDNA microarray: Preliminary study[J]. BMC Res Notes, 2008, 1: 106. DOI: 10.1186/1756-0500-1-106.
    [20] BUKONG TN, KODYS K, SZABO G. Human ezrin-moesin-radixin proteins modulate hepatitis C virus infection[J]. Hepatology, 2013, 58(5): 1569-1579. DOI: 10.1002/hep.26500.
    [21] XUE Y, MARS WM, BOWEN W, et al. Hepatitis C virus mimics effects of glypican-3 on CD81 and promotes development of hepatocellular carcinomas via activation of hippo pathway in hepatocytes[J]. Am J Pathol, 2018, 188(6): 1469-1477. DOI: 10.1016/j.ajpath.2018.02.013.
    [22] BUKONG TN, KODYS K, SZABO G. A novel human radixin peptide inhibits hepatitis C virus infection at the level of cell entry[J]. Int J Pept Res Ther, 2014, 20(3): 269-276. DOI: 10.1007/s10989-013-9390-8.
    [23] INUBUSHI S, NAGANO-FUJⅡ M, KITAYAMA K, et al. Hepatitis C virus NS5A protein interacts with and negatively regulates the non-receptor protein tyrosine kinase Syk[J]. J Gen Virol, 2008, 89(Pt 5): 1231-1242. DOI: 10.1099/vir.0.83510-0.
    [24] GBD 2016 Alcohol Collaborators. Alcohol use and burden for 195 countries and territories, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2018, 392(10152): 1015-1035. DOI: 10.1016/S0140-6736(18)31310-2.
    [25] DUNN W, SHAH VH. Pathogenesis of alcoholic liver disease[J]. Clin Liver Dis, 2016, 20(3): 445-456. DOI: 10.1016/j.cld.2016.02.004.
    [26] STICKEL F, DATZ C, HAMPE J, et al. Pathophysiology and management of alcoholic liver disease: Update 2016[J]. Gut Liver, 2017, 11(2): 173-188. DOI: 10.5009/gnl16477.
    [27] PETRASEK J, IRACHETA-VELLVE A, CSAK T, et al. STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease[J]. Proc Natl Acad Sci U S A, 2013, 110(41): 16544-16549. DOI: 10.1073/pnas.1308331110.
    [28] GUO J, FRIEDMAN SL. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis[J]. Fibrogenesis Tissue Repair, 2010, 3: 21. DOI: 10.1186/1755-1536-3-21.
    [29] SZABO G. Gut-liver axis in alcoholic liver disease[J]. Gastroenterology, 2015, 148(1): 30-36. DOI: 10.1053/j.gastro.2014.10.042.
    [30] ROH YS, SEKI E. Toll-like receptors in alcoholic liver disease, non-alcoholic steatohepatitis and carcinogenesis[J]. J Gastroenterol Hepatol, 2013, 28(Suppl 1): 38-42. DOI: 10.1111/jgh.12019.
    [31] ZHOU H, YU M, ZHAO J, et al. IRAKM-Mincle axis links cell death to inflammation: Pathophysiological implications for chronic alcoholic liver disease[J]. Hepatology, 2016, 64(6): 1978-1993. DOI: 10.1002/hep.28811.
    [32] KURNIAWAN DW, JAJORIYA AK, DHAWAN G, et al. Therapeutic inhibition of spleen tyrosine kinase in inflammatory macrophages using PLGA nanoparticles for the treatment of non-alcoholic steatohepatitis[J]. J Control Release, 2018, 288: 227-238. DOI: 10.1016/j.jconrel.2018.09.004.
    [33] BUKONG TN, IRACHETA-VELLVE A, SAHA B, et al. Inhibition of spleen tyrosine kinase activation ameliorates inflammation, cell death, and steatosis in alcoholic liver disease[J]. Hepatology, 2016, 64(4): 1057-1071. DOI: 10.1002/hep.28680.
    [34] BUKONG TN, IRACHETA-VELLVE A, GYONGYOSI B, et al. Therapeutic benefits of spleen tyrosine kinase inhibitor administration on binge drinking-induced alcoholic liver injury, steatosis, and inflammation in mice[J]. Alcohol Clin Exp Res, 2016, 40(7): 1524-1530. DOI: 10.1111/acer.13096.
    [35] FRIEDMAN SL, NEUSCHWANDER-TETRI BA, RINELLA M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24(7): 908-922. DOI: 10.1038/s41591-018-0104-9.
    [36] YOUNOSSI ZM, KOENIG AB, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. DOI: 10.1002/hep.28431.
    [37] FANG YL, CHEN H, WANG CL, et al. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From "two hit theory" to "multiple hit model"[J]. World J Gastroenterol, 2018, 24(27): 2974-2983. DOI: 10.3748/wjg.v24.i27.2974.
    [38] BIEGHS V, TRAUTWEIN C. Innate immune signaling and gut-liver interactions in non-alcoholic fatty liver disease[J]. Hepatobiliary Surg Nutr, 2014, 3(6): 377-385. DOI: 10.3978/j.issn.2304-3881.2014.12.04.
    [39] KIZILTAS S. Toll-like receptors in pathophysiology of liver diseases[J]. World J Hepatol, 2016, 8(32): 1354-1369. DOI: 10.4254/wjh.v8.i32.1354.
    [40] CARPINO G, NOBILI V, RENZI A, et al. Macrophage activation in pediatric nonalcoholic fatty liver disease (NAFLD) correlates with hepatic progenitor cell response via Wnt3a pathway[J]. PLoS One, 2016, 11(6): e0157246. DOI: 10.1371/journal.pone.0157246.
    [41] FLYNN R, ALLEN JL, LUZNIK L, et al. Targeting Syk-activated B cells in murine and human chronic graft-versus-host disease[J]. Blood, 2015, 125(26): 4085-4094. DOI: 10.1182/blood-2014-08-595470.
    [42] MALIK AF, HOQUE R, OUYANG X, et al. Inflammasome components Asc and caspase-1 mediate biomaterial-induced inflammation and foreign body response[J]. Proc Natl Acad Sci U S A, 2011, 108(50): 20095-20100. DOI: 10.1073/pnas.1105152108.
    [43] MRIDHA AR, WREE A, ROBERTSON A, et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice[J]. J Hepatol, 2017, 66(5): 1037-1046. DOI: 10.1016/j.jhep.2017.01.022.
    [44] SONG IJ, YANG YM, INOKUCHI-SHIMIZU S, et al. The contribution of toll-like receptor signaling to the development of liver fibrosis and cancer in hepatocyte-specific TAK1-deleted mice[J]. Int J Cancer, 2018, 142(1): 81-91. DOI: 10.1002/ijc.31029.
    [45] YUAN Y, WANG J, LI J, et al. Frequent epigenetic inactivation of spleen tyrosine kinase gene in human hepatocellular carcinoma[J]. Clin Cancer Res, 2006, 12(22): 6687-6695. DOI: 10.1158/1078-0432.CCR-06-0921.
    [46] SHIN SH, LEE KH, KIM BH, et al. Downregulation of spleen tyrosine kinase in hepatocellular carcinoma by promoter CpG island hypermethylation and its potential role in carcinogenesis[J]. Lab Invest, 2014, 94(12): 1396-1405. DOI: 10.1038/labinvest.2014.118.
    [47] CARONE C, OLIVANI A, DALLA VALLE R, et al. Immune gene expression profile in hepatocellular carcinoma and surrounding tissue predicts time to tumor recurrence[J]. Liver Cancer, 2018, 7(3): 277-294. DOI: 10.1159/000486764.
    [48] HONG J, HU K, YUAN Y, et al. CHK1 targets spleen tyrosine kinase (L) for proteolysis in hepatocellular carcinoma[J]. J Clin Invest, 2012, 122(6): 2165-2175. DOI: 10.1172/JCI61380.
    [49] HONG J, YUAN Y, WANG J, et al. Expression of variant isoforms of the tyrosine kinase SYK determines the prognosis of hepatocellular carcinoma[J]. Cancer Res, 2014, 74(6): 1845-1856. DOI: 10.1158/0008-5472.CAN-13-2104.
    [50] TORRES-HERNANDEZ A, WANG W, NIKIFOROV Y, et al. Targeting SYK signaling in myeloid cells protects against liver fibrosis and hepatocarcinogenesis[J]. Oncogene, 2019, 38(23): 4512-4526. DOI: 10.1038/s41388-019-0734-5.
  • 加载中
计量
  • 文章访问数:  31
  • HTML全文浏览量:  10
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-29
  • 修回日期:  2021-01-18
  • 刊出日期:  2021-08-16
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回