留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阴离子交换蛋白2与原发性胆汁性胆管炎发病机制的关系

鉏曦 邢练军

鉏曦, 邢练军. 阴离子交换蛋白2与原发性胆汁性胆管炎发病机制的关系[J]. 临床肝胆病杂志, 2021, 37(3): 718-720. DOI: 10.3969/j.issn.1001-5256.2021.03.044
引用本文: 鉏曦, 邢练军. 阴离子交换蛋白2与原发性胆汁性胆管炎发病机制的关系[J]. 临床肝胆病杂志, 2021, 37(3): 718-720. DOI: 10.3969/j.issn.1001-5256.2021.03.044
CHU X, XING LJ. Role of anion exchanger 2 in the pathogenesis of primary biliary cholangitis [J]. J Clin Hepatol, 2021, 37(3): 718-720. DOI: 10.3969/j.issn.1001-5256.2021.03.044
Citation: CHU X, XING LJ. Role of anion exchanger 2 in the pathogenesis of primary biliary cholangitis [J]. J Clin Hepatol, 2021, 37(3): 718-720. DOI: 10.3969/j.issn.1001-5256.2021.03.044

阴离子交换蛋白2与原发性胆汁性胆管炎发病机制的关系

DOI: 10.3969/j.issn.1001-5256.2021.03.044
基金项目: 

上海市进一步加快中医药事业发展三年行动计划(2018年—2020年) ZY〔2018-2020〕-CCCX-2002-03

上海市申康临床创新项目-新兴前沿技术联合攻关项目 SHDC12019118

详细信息
    作者简介:

    鉏曦(1992—),男,主要从事中西医防治肝病的研究

    通讯作者:

    邢练军,xingdoctor@126.com

  • 利益冲突声明:所有作者均声明不存在利益冲突。
  • 作者贡献声明:鉏曦负责资料分析,撰写论文;邢练军负责指导撰写文章并帮助修改论文。
  • 中图分类号: R575

Role of anion exchanger 2 in the pathogenesis of primary biliary cholangitis

  • 摘要: 原发性胆汁性胆管炎(PBC)的致病原因和发病机制仍不明确。目前主要认为胆管微环境变化和自身免疫反应是其发病的主要因素。阴离子交换蛋白2(AE2)是一种位于上皮细胞细胞膜上的HCO3-/Cl-交换蛋白,因发现其可以诱发和加重PBC的病程而被广大学者重视。从AE2以及相关调控机制着手,归纳总结了AE2在胆管微环境和自身免疫反应中所起到的作用,进一步对PBC的发病机制进行分析,以期通过探索AE2在PBC中的调控机制寻找到潜在的PBC治疗新方法以及诊断和预后判断指标。
  • [1] CHEN CW, CHENG J, DOU XG, et al. Consensus on the diagnosis and management of primary biliary cirrhosis(cholangitis)(2015)[J]. J Clin Hepatol, 2015, 31(12): 1980-1988. DOI: 10.3969/j.issn.1001-5256.2015.12.004

    陈成伟, 成军, 窦晓光, 等. 原发性胆汁性肝硬化(又名原发性胆汁性胆管炎)诊断和治疗共识(2015)[J]. 临床肝胆病杂志, 2015, 31(12): 1980-1988. DOI: 10.3969/j.issn.1001-5256.2015.12.004
    [2] ZENG N, DUAN W, CHEN S, et al. Epidemiology and clinical course of primary biliary cholangitis in the Asia-Pacific region: A systematic review and meta-analysis[J]. Hepatol Int, 2019, 13(6): 788-99. DOI: 10.1007/s12072-019-09984-x
    [3] LINDOR KD, BOWLUS CL, BOYER J, et al. Primary biliary cholangitis: 2018 practice guidance from the American Association for the Study of Liver Diseases[J]. Hepatology, 2019, 69(1): 394-419.
    [4] RODRIGUES PM, PERUGORRIA MJ, SANTOS-LASO A, et al. Primary biliary cholangitis: A tale of epigenetically-induced secretory failure?[J]. J Hepatol, 2018, 69(6): 1371-1383. DOI: 10.1016/j.jhep.2018.08.020
    [5] TERZIROLI BERETTA-PICCOLI B, MIELI-VERGANI G, VERGANI D, et al. The challenges of primary biliary cholangitis: What is new and what needs to be done[J]. J Autoimmun, 2019, 105: 102328. DOI: 10.1016/j.jaut.2019.102328
    [6] ROMERO MF, CHEN AP, PARKER MD, et al. The SLC4 family of bicarbonate (HCO3) transporters[J]. Mol Aspects Med, 2013, 34(2-3): 159-182. DOI: 10.1016/j.mam.2012.10.008
    [7] MEDINA JF. Role of the anion exchanger 2 in the pathogenesis and treatment of primary biliary cirrhosis[J]. Dig Dis, 2011, 29(1): 103-112. DOI: 10.1159/000324144
    [8] ARENAS F, HERVIAS I, URIZ M, et al. Combination of ursodeoxycholic acid and glucocorticoids upregulates the AE2 alternate promoter in human liver cells[J]. J Clin Invest, 2008, 118(2): 695-709.
    [9] CORPECHOT C, CARRAT F, BAHR A, et al. The effect of ursodeoxycholic acid therapy on the natural course of primary biliary cirrhosis[J]. Gastroenterology, 2005, 128(2): 297-303. DOI: 10.1053/j.gastro.2004.11.009
    [10] KIM S, HAN SY, YU KS, et al. Impaired autophagy promotes bile acid-induced hepatic injury and accumulation of ubiquitinated proteins[J]. Biochem Biophys Res Commun, 2018, 495(1): 1541-1547. DOI: 10.1016/j.bbrc.2017.11.202
    [11] MARIN JJ, MACIAS RI, BRIZ O, et al. Bile acids in physiology, pathology and pharmacology[J]. Curr Drug Metab, 2015, 17(1): 4-29. DOI: 10.2174/1389200216666151103115454
    [12] BEUERS U, HOHENESTER S, DE BUY WENNIGER LJ, et al. The biliary HCO(3)(-) umbrella: A unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies[J]. Hepatology, 2010, 52(4): 1489-1496. DOI: 10.1002/hep.23810
    [13] MISZCZUK GS, BANALES JM, ZUCCHETTI AE, et al. Adaptive downregulation of Cl-/HCO3- exchange activity in rat hepatocytes under experimental obstructive cholestasis[J]. PLoS One, 2019, 14(2): e0212215. DOI: 10.1371/journal.pone.0212215
    [14] HISAMOTO S, SHIMODA S, HARADA K, et al. Hydrophobic bile acids suppress expression of AE2 in biliary epithelial cells and induce bile duct inflammation in primary biliary cholangitis[J]. J Autoimmun, 2016, 75: 150-160. DOI: 10.1016/j.jaut.2016.08.006
    [15] HOHENESTER S, WENNIGER LM, PAULUSMA CC, et al. A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes[J]. Hepatology, 2012, 55(1): 173-183. DOI: 10.1002/hep.24691
    [16] CHANG JC, GO S, DE WAART DR, et al. Soluble adenylyl cyclase regulates bile salt-induced apoptosis in human cholangiocytes[J]. Hepatology, 2016, 64(2): 522-534. DOI: 10.1002/hep.28550
    [17] SALAS JT, BANALES JM, SARVIDE S, et al. Ae2a, b-deficient mice develop antimitochondrial antibodies and other features resembling primary biliary cirrhosis[J]. Gastroenterology, 2008, 134(5): 1482-1493. DOI: 10.1053/j.gastro.2008.02.020
    [18] TRAUNER M, FICKERT P, BAGHDASARYAN A, et al. New insights into autoimmune cholangitis through animal models[J]. Dig Dis, 2010, 28(1): 99-104. DOI: 10.1159/000282072
    [19] CONCEPCION AR, SALAS JT, SÁEZ E, et al. CD8+T cells undergo activation and programmed death-1 repression in the liver of aged Ae2a, b-/- mice favoring autoimmune cholangitis[J]. Oncotarget, 2015, 6(30): 28588-28606. DOI: 10.18632/oncotarget.5665
    [20] CELAY J, LOZANO T, CONCEPCION AR, et al. Targeting the anion exchanger 2 with specific peptides as a new therapeutic approach in B lymphoid neoplasms[J]. Haematologica, 2018, 103(6): 1065-1072. DOI: 10.3324/haematol.2017.175687
    [21] MA WT, CHEN DK. Immunological abnormalities in patients with primary biliary cholangitis[J]. Clin Sci (Lond), 2019, 133(6): 741-760. DOI: 10.1042/CS20181123
    [22] CONCEPCION AR, SALAS JT, SARVIDE S, et al. Anion exchanger 2 is critical for CD8(+) T cells to maintain pHi homeostasis and modulate immune responses[J]. Eur J Immunol, 2014, 44(5): 1341-1351. DOI: 10.1002/eji.201344218
    [23] ARENAS F, HERVÍAS I, SÁEZ E, et al. Promoter hypermethylation of the AE2/SLC4A2 gene in PBC[J]. JHEP Rep, 2019, 1(3): 145-153. DOI: 10.1016/j.jhepr.2019.05.006
    [24] XU LN, LI Y, PENG JY. microRNA and drug-induced liver injury[J]. Chin J Clin Pharmacol Ther, 2020, 25(7): 803-809. https://www.cnki.com.cn/Article/CJFDTOTAL-YLZL202007015.htm

    许丽娜, 李月, 彭金咏. microRNA与药物性肝损伤[J]. 中国临床药理学与治疗学, 2020, 25(7): 803-809. https://www.cnki.com.cn/Article/CJFDTOTAL-YLZL202007015.htm
    [25] MO H, XU M. Research progress of microRNA-1290 in digestive system tumors[J]. China Med Herald, 2020, 17(29): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202029014.htm

    莫辉, 徐岷. microRNA-1290在消化系统肿瘤中的研究进展[J]. 中国医药导报, 2020, 17(29): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202029014.htm
    [26] PADGETT KA, LAN RY, LEUNG PC, et al. Primary biliary cirrhosis is associated with altered hepatic microRNA expression[J]. J Autoimmun, 2009, 32(3-4): 246-253. DOI: 10.1016/j.jaut.2009.02.022
    [27] SZABO G, BALA S. MicroRNAs in liver disease[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(9): 542-552. DOI: 10.1038/nrgastro.2013.87
    [28] ERICE O, MUNOZ-GARRIDO P, VAQUERO J, et al. MicroRNA-506 promotes primary biliary cholangitis-like features in cholangiocytes and immune activation[J]. Hepatology, 2018, 67(4): 1420-1440. DOI: 10.1002/hep.29533
    [29] BANALES JM, SÁEZ E, URIZ M, et al. Up-regulation of microRNA 506 leads to decreased Cl-/HCO3- anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis[J]. Hepatology, 2012, 56(2): 687-697. DOI: 10.1002/hep.25691
    [30] HONG JH, MUHAMMAD E, ZHENG C, et al. Essential role of carbonic anhydrase XⅡ in secretory gland fluid and HCO3(-) secretion revealed by disease causing human mutation[J]. J Physiol, 2015, 593(24): 5299-5312. DOI: 10.1113/JP271378
    [31] HWANG S, SHIN DM, HONG JH. Drug repurposing as an antitumor agent: Disulfiram-mediated carbonic anhydrase 12 and anion exchanger 2 modulation to inhibit cancer cell migration[J]. Molecules, 2019, 24(18): 3409. DOI: 10.3390/molecules24183409
    [32] WANG W, REN X, CAI Y, et al. Rifampicin induces bicarbonate-rich choleresis in rats: Involvement of anion exchanger 2[J]. Dig Dis Sci, 2016, 61(1): 126-136. DOI: 10.1007/s10620-015-3850-2
  • 加载中
计量
  • 文章访问数:  20
  • HTML全文浏览量:  5
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-13
  • 修回日期:  2020-11-16
  • 刊出日期:  2021-03-16
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回