留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HBV感染肾小管细胞机制的研究进展

李迎娟 冯国和

李迎娟, 冯国和. HBV感染肾小管细胞机制的研究进展[J]. 临床肝胆病杂志, 2021, 37(3): 681-684. DOI: 10.3969/j.issn.1001-5256.2021.03.036
引用本文: 李迎娟, 冯国和. HBV感染肾小管细胞机制的研究进展[J]. 临床肝胆病杂志, 2021, 37(3): 681-684. DOI: 10.3969/j.issn.1001-5256.2021.03.036
LI YJ, FENG GH. Research advances in infection of renal tubular cells by hepatitis B virus[J]. J Clin Hepatol, 2021, 37(3): 681-684. DOI: 10.3969/j.issn.1001-5256.2021.03.036
Citation: LI YJ, FENG GH. Research advances in infection of renal tubular cells by hepatitis B virus[J]. J Clin Hepatol, 2021, 37(3): 681-684. DOI: 10.3969/j.issn.1001-5256.2021.03.036

HBV感染肾小管细胞机制的研究进展

DOI: 10.3969/j.issn.1001-5256.2021.03.036
详细信息
    作者简介:

    李迎娟(1995—),女,主要从事慢性HBV感染方面研究

    通讯作者:

    冯国和,fenggh@sj-hospital.org

  • 利益冲突声明: 所有作者均声明不存在利益冲突。
  • 作者贡献声明:李迎娟负责资料分析,撰写论文,修改论文;冯国和负责拟定写作思路,指导撰写文章并最后定稿。
  • 中图分类号: R512.62;R57

Research advances in infection of renal tubular cells by hepatitis B virus

  • 摘要: 肾脏具备HBV感染肝细胞的关键因素,HBV相关肾小球肾炎(HBV-GN)的发病机制尚未完全明确,近年来HBV直接损伤肾小管的机制越来越受到重视。HBV可以通过调节细胞周期、激活NF-κB等相关信号转导通路诱导肾小管细胞凋亡,导致HBV-GN进展。目前在临床上尚无作用靶点位于肾脏治疗HBV-GN的药物。将HBV感染细胞的关键因素和HBV损伤肾小管细胞研究进展总结如下,阐述HBV直接感染肾小管细胞的可能机制,为HBV-GN的治疗提供新思路。
  • [1] Polaris Observatory Collaborators. Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: A modelling study[J]. Lancet Gastroenterol Hepatol, 2018, 3(6): 383-403. DOI: 10.1016/S2468-1253(18)30056-6
    [2] AMET S, BRONOWICKI JP, THABUT D, et al. Prevalence of renal abnormalities in chronic HBV infection: The HARPE study[J]. Liver Int, 2015, 35(1): 148-155. DOI: 10.1111/liv.12480
    [3] XU MD F, WANG MD C, SHI MD X, et al. Resolution of HBV infection occurs sooner than recovery of renal disease in adult serum HBsAg-negative HBV-associated glomerulonephritis[J]. J Med Virol, 2018, 90(9): 1503-1507. DOI: 10.1002/jmv.25211
    [4] VERRIER ER, COLPITTS CC, BACH C, et al. A targeted functional RNA interference screen uncovers glypican 5 as an entry factor for hepatitis B and D viruses[J]. Hepatology, 2016, 63(1): 35-48. DOI: 10.1002/hep.28013
    [5] MITRA B, THAPA RJ, GUO H, et al. Host functions used by hepatitis B virus to complete its life cycle: Implications for developing host-targeting agents to treat chronic hepatitis B[J]. Antiviral Res, 2018, 158: 185-198. DOI: 10.1016/j.antiviral.2018.08.014
    [6] YANG F, WU L, XU W, et al. Diverse effects of the NTCP p. Ser267Phe Variant on disease progression during chronic HBV infection and on HBV preS1 variability[J]. Front Cell Infect Microbiol, 2019, 9: 18. DOI: 10.3389/fcimb.2019.00018
    [7] MEREDITH LW, HU K, CHENG X, et al. Lentiviral hepatitis B pseudotype entry requires sodium taurocholate co-transporting polypeptide and additional hepatocyte-specific factors[J]. J Gen Virol, 2016, 97(1): 121-127. DOI: 10.1099/jgv.0.000317
    [8] KO HL, LAM TH, NG H, et al. Identification of Slug and SOX7 as transcriptional repressors binding to the hepatitis B virus core promoter[J]. J Hepatol, 2017.[Online ahead of print]
    [9] FERDEK PE, JAKUBOWSKA MA, GERASIMENKO JV, et al. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium-driven bile uptake[J]. J Physiol, 2016, 594(21): 6147-6164. DOI: 10.1113/JP272774
    [10] LAU HH, NG N, LOO L, et al. The molecular functions of hepatocyte nuclear factors - In and beyond the liver[J]. J Hepatol, 2018, 68(5): 1033-1048. DOI: 10.1016/j.jhep.2017.11.026
    [11] YANG X, CAI W, SUN X, et al. Defined host factors support HBV infection in non-hepatic 293T cells[J]. J Cell Mol Med, 2020, 24(4): 2507-2518. DOI: 10.1111/jcmm.14944
    [12] HERRSCHER C, PASTOR F, BURLAUD-GAILLARD J, et al. Hepatitis B virus entry into HepG2-NTCP cells requires clathrin-mediated endocytosis[J]. Cell Microbiol, 2020, 22(8): e13205.
    [13] IWAMOTO M, SASO W, SUGIYAMA R, et al. Epidermal growth factor receptor is a host-entry cofactor triggering hepatitis B virus internalization[J]. Proc Natl Acad Sci U S A, 2019, 116(17): 8487-8492. DOI: 10.1073/pnas.1811064116
    [14] OCHI M, OTSUKA M, MARUYAMA R, et al. HBx increases EGFR expression by inhibiting miR129-5p function[J]. Biochem Biophys Res Commun, 2020, 529(2): 198-203. DOI: 10.1016/j.bbrc.2020.06.018
    [15] GAN CJ, LI WF, LI CN, et al. EGF receptor inhibitors comprehensively suppress hepatitis B virus by downregulation of STAT3 phosphorylation[J]. Biochem Biophys Rep, 2020, 22: 100763. http://www.sciencedirect.com/science/article/pii/S2405580820300728
    [16] LI H, SHAO F, QIAN B, et al. Upregulation of HER2 in tubular epithelial cell drives fibroblast activation and renal fibrosis[J]. Kidney Int, 2019, 96(3): 674-688. DOI: 10.1016/j.kint.2019.04.012
    [17] HERRSCHER C, ROINGEARD P, BLANCHARD E. Hepatitis B virus entry into cells[J]. Cells-Basel, 2020, 9(6): 1486. DOI: 10.3390/cells9061486
    [18] IWAMOTO M, SASO W, NISHIOKA K, et al. The machinery for endocytosis of epidermal growth factor receptor coordinates the transport of incoming hepatitis B virus to the endosomal network[J]. J Biol Chem, 2020, 295(3): 800-807. DOI: 10.1016/S0021-9258(17)49936-4
    [19] HU Q, ZHANG F, DUAN L, et al. E-cadherin plays a role in hepatitis B virus entry through affecting glycosylated sodium-taurocholate cotransporting polypeptide distribution[J]. Front Cell Infect Microbiol, 2020, 10: 74. DOI: 10.3389/fcimb.2020.00074
    [20] WANG X, WANG L, ZHU N, et al. Hepatitis B virus X protein modulates renal tubular epithelial cell-induced T-cell and macrophage responses[J]. Immunol Cell Biol, 2016, 94(3): 266-273. DOI: 10.1038/icb.2015.85
    [21] HOCHANE M, RAISON D, COQUARD C, et al. Parathyroid hormone-related protein modulates inflammation in mouse mesangial cells and blunts apoptosis by enhancing COX-2 expression[J]. Am J Physiol Cell Physiol, 2018, 314(2): C242-C253. DOI: 10.1152/ajpcell.00018.2017
    [22] MASOLA V, CARRARO A, GRANATA S, et al. In vitro effects of interleukin (IL)-1 beta inhibition on the epithelial-to-mesenchymal transition (EMT) of renal tubular and hepatic stellate cells[J]. J Transl Med, 2019, 17(1): 12. DOI: 10.1186/s12967-019-1770-1
    [23] WANG L, YE Z, LIANG H, et al. The combination of tacrolimus and entecavir improves the remission of HBV-associated glomerulonephritis without enhancing viral replication[J]. Am J Transl Res, 2016, 8(3): 1593-1600. http://europepmc.org/abstract/MED/26807867
    [24] ALLWEISS L, DANDRI M. The role of cccDNA in HBV maintenance[J]. Viruses, 2017, 9(6): 156. DOI: 10.3390/v9060156
    [25] LEVRERO M, ZUCMAN-ROSSI J. Mechanisms of HBV-induced hepatocellular carcinoma[J]. J Hepatol, 2016, 64(1 Suppl): S84-S101. http://smartsearch.nstl.gov.cn/paper_detail.html?id=7e744aa37429a3f8dc9f486b56f9e28c
    [26] PRESCOTT NA, BRAM Y, SCHWARTZ RE, et al. Targeting hepatitis B virus covalently closed circular DNA and hepatitis B virus x protein: Recent advances and new approaches[J]. ACS Infect Dis, 2019, 5(10): 1657-1667. DOI: 10.1021/acsinfecdis.9b00249
    [27] LIANG DY, SHA S, YI Q, et al. Hepatitis B X protein upregulates decoy receptor 3 expression via the PI3K/NF-κB pathway[J]. Cell Signal, 2019, 62: 109346. DOI: 10.1016/j.cellsig.2019.109346
    [28] WU A, CHEN H, XU C, et al. miR-203a is involved in HBx-induced inflammation by targeting Rap1a[J]. Exp Cell Res, 2016, 349(1): 191-197. DOI: 10.1016/j.yexcr.2016.10.016
    [29] HAN W, LUO M, HE M, et al. HBx gene transfection affects the cycle of primary renal tubular epithelial cells through regulating cyclin expression[J]. Mol Med Rep, 2018, 18(2): 1947-1954. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072163/
    [30] LI M, HU L, ZHU F, et al. Hepatitis B virus X protein promotes renal epithelial-mesenchymal transition in human renal proximal tubule epithelial cells through the activation of NF-κB[J]. Int J Mol Med, 2016, 38(2): 513-520. DOI: 10.3892/ijmm.2016.2637
    [31] YANG Y, WANG X, ZHANG Y, et al. Hepatitis B virus X protein and proinflammatory cytokines synergize to enhance TRAIL-induced apoptosis of renal tubular cells by upregulation of DR4[J]. Int J Biochem Cell Biol, 2018, 97: 62-72. DOI: 10.1016/j.biocel.2018.02.006
    [32] LI J, BAO L, ZHA D, et al. Oridonin protects against the inflammatory response in diabetic nephropathy by inhibiting the TLR4/p38-MAPK and TLR4/NF-κB signaling pathways[J]. Int Immunopharmacol, 2018, 55: 9-19. DOI: 10.1016/j.intimp.2017.11.040
    [33] FENG Y, CUI Y, GAO JL, et al. Resveratrol attenuates neuronal autophagy and inflammatory injury by inhibiting the TLR4/NF-κB signaling pathway in experimental traumatic brain injury[J]. Int J Mol Med, 2016, 37(4): 921-930. DOI: 10.3892/ijmm.2016.2495
    [34] YANG YT, WANG X, ZHANG YY, et al. The histone demethylase LSD1 promotes renal inflammation by mediating TLR4 signaling in hepatitis B virus-associated glomerulonephritis[J]. Cell Death Dis, 2019, 10(4): 278. DOI: 10.1038/s41419-019-1514-4
    [35] CHEN J, LI D, LUO E. Telbivudine antagonizes TLR4 to inhibit the epithelial-to-mesenchymal transition in human proximal tubular epithelial cells in vitro[J]. Int Immunopharmacol, 2019, 74: 105683. DOI: 10.1016/j.intimp.2019.105683
    [36] HE P, ZHANG B, LIU D, et al. Hepatitis B virus x protein modulates apoptosis in NRK-52E Cells and activates Fas/FasL through the MLK3-MKK7-JNK3 signaling pathway[J]. Cell Physiol Biochem, 2016, 39(4): 1433-1443. DOI: 10.1159/000447846
    [37] FU B, JI Y, HU S, et al. Efficacy and safety of anti-viral therapy for Hepatitis B virus-associated glomerulonephritis: A meta-analysis[J]. PLoS One, 2020, 15(1): e0227532. DOI: 10.1371/journal.pone.0227532
    [38] WANG WN, WU MY, MA FZ, et al. Meta-analysis of the efficacy and safety of nucleotide/nucleoside analog monotherapy for hepatitis B virus-associated glomerulonephritis[J]. Clin Nephrol, 2016, 85(1): 21-29. http://europepmc.org/abstract/med/26636326
    [39] JIANG W, LIU T, DONG H, et al. Relationship between serum DNA replication, clinicopathological characteristics and prognosis of hepatitis B virus-associated glomerulonephritis with severe proteinuria by lamivudine plus adefovir dipivoxil combination therapy[J]. Biomed Environ Sci, 2015, 28(3): 206-213. http://d.wanfangdata.com.cn/periodical/bes201503005
    [40] KAMIMURA H, SETSU T, KIMURA N, et al. Renal impairment in chronic hepatitis B: A review[J]. Diseases, 2018, 6(2): 52. DOI: 10.3390/diseases6020052
    [41] SUN LJ, SHAN JP, CUI RL, et al. Combination therapy with lamivudine and angiotensin-converting enzyme inhibitor/angiotensin receptor blocker for hepatitis B virus-associated glomerulonephritis with mild to moderate proteinuria: A clinical review of 38 cases[J]. Int Urol Nephrol, 2017, 49(6): 1049-1056. DOI: 10.1007/s11255-017-1563-5
    [42] MAHAJAN V, D'CRUZ S, NADA R, et al. Successful use of entecavir in hepatitis B-associated membranous nephropathy[J]. J Trop Pediatr, 2018, 64(3): 249-252. DOI: 10.1093/tropej/fmx058
    [43] KATAOKA H, MOCHIZUKI T, AKIHISA T, et al. Successful entecavir plus prednisolone treatment for hepatitis B virus-associated membranoproliferative glomerulonephritis: A case report[J]. Medicine (Baltimore), 2019, 98(2): e14014. DOI: 10.1097/MD.0000000000014014
    [44] FANG J, LI W, PENG X, et al. Hepatitis B reactivation in HBsAg-negative/HBcAb-positive patients receiving immunosuppressive therapy for glomerulonephritis: A retrospective analysis[J]. Int Urol Nephrol, 2017, 49(3): 475-482. DOI: 10.1007/s11255-016-1487-5
  • 加载中
计量
  • 文章访问数:  41
  • HTML全文浏览量:  14
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-06
  • 修回日期:  2020-10-30
  • 刊出日期:  2021-03-16
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回