留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肝纤维化中上皮间质转化的调控及靶向治疗的研究进展

王永娟 谢肖立 姜慧卿

王永娟, 谢肖立, 姜慧卿. 肝纤维化中上皮间质转化的调控及靶向治疗的研究进展[J]. 临床肝胆病杂志, 2021, 37(1): 165-168. DOI: 10.3969/j.issn.1001-5256.2021.01.035
引用本文: 王永娟, 谢肖立, 姜慧卿. 肝纤维化中上皮间质转化的调控及靶向治疗的研究进展[J]. 临床肝胆病杂志, 2021, 37(1): 165-168. DOI: 10.3969/j.issn.1001-5256.2021.01.035
WANG YJ, XIE XL, JIANG HQ. Research advances in the regulation of epithelial-mesenchymal transition and targeted therapy for liver fibrosis [J]. J Clin Hepatol, 2021, 37(1): 165-168. DOI: 10.3969/j.issn.1001-5256.2021.01.035
Citation: WANG YJ, XIE XL, JIANG HQ. Research advances in the regulation of epithelial-mesenchymal transition and targeted therapy for liver fibrosis [J]. J Clin Hepatol, 2021, 37(1): 165-168. DOI: 10.3969/j.issn.1001-5256.2021.01.035

肝纤维化中上皮间质转化的调控及靶向治疗的研究进展

DOI: 10.3969/j.issn.1001-5256.2021.01.035
基金项目: 

国家自然科学基金资助项目 81770601

河北省研究生创新资助项目 CXZZBS2018076

河北省重点研发计划项目 182777117D

详细信息
    作者简介:

    王永娟(1991—),女,主要从事肝脏疾病的研究

    通讯作者:

    姜慧卿,jianghq@aliyun.com

  • 作者贡献声明:王永娟负责课题设计,资料分析,撰写论文;谢肖立参与收集数据,修改论文;姜慧卿负责拟定写作思路,指导撰写文章并最后定稿。
  • 中图分类号: R575.2

Research advances in the regulation of epithelial-mesenchymal transition and targeted therapy for liver fibrosis

  • 摘要: 肝纤维化的病理基础是细胞外基质沉积,肌成纤维细胞是细胞外基质的主要来源。上皮间质转化(EMT)是肌成纤维细胞的产生机制之一。目前大量研究表明,以EMT关键分子及信号通路为靶点进行干预,可减轻肝纤维化。回顾了相关文献,对EMT相关的信号通路、重要调控分子和以EMT为靶点治疗肝纤维化的药物进行综述,以期为治疗肝纤维化提供新思路。
  • [1] GUANHUA X, ANNA MAE D. Evidence for and against epithelial-to-mesenchymal[J]. Am J Physiol Gastrointest Liver Physiol, 2013, 305(12): G881-90. DOI: 10.1152/ajpgi.00289.2013
    [2] KALLURI R, WEINBERG RA. The basics of epithelial-mesenchymal transition[J]. J Clin Invest, 2009, 119(6): 1420-1428. DOI: 10.1172/JCI39104
    [3] GREENBURG G, HAY ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells[J]. J Cell Biol, 1982, 95(1): 333-339. DOI: 10.1083/jcb.95.1.333
    [4] LEE JM, DEDHAR S, KALLURI R, et al. The epithelial-mesenchymal transition: New insights in signaling, development, and disease[J]. J Cell Biol, 2006, 172(7): 973-981. DOI: 10.1083/jcb.200601018
    [5] THIERY JP, ACLOQUE H, HUANG RY, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5): 871-890. DOI: 10.1016/j.cell.2009.11.007
    [6] KRIZ W, KAISSLING B, LE HIR M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: Fact or fantasy?[J]. J Clin Invest, 2011, 121(2): 468-474. DOI: 10.1172/JCI44595
    [7] MIZUTANI A, KOINUMA D, TSUTSUMI S, et al. Cell type-specific target selection by combinatorial binding of Smad2/3 proteins and hepatocyte nuclear factor 4alpha in HepG2 cells[J]. J Biol Chem, 2011, 286(34): 29848-29860. DOI: 10.1074/jbc.M110.217745
    [8] XU J, LAMOUILLE S, DERYNCK R. TGF-beta-induced epithelial to mesenchymal transition[J]. Cell Res, 2009, 19(2): 156-172. DOI: 10.1038/cr.2009.5
    [9] SYN WK, CHOI SS, LIASKOU E, et al. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis[J]. Hepatology, 2011, 53(1): 106-115. DOI: 10.1002/hep.23998
    [10] XIE G, KARACA G, SWIDERSKA-SYN M, et al. Cross-talk between Notch and Hedgehog regulates hepatic stellate cell fate in mice[J]. Hepatology, 2013, 58(5): 1801-1813. DOI: 10.1002/hep.26511
    [11] SEN S, LANGIEWICZ M, JUMAA H, et al. Hassan deletion of splicing factor SRSF3 in hepatocytes predisposes to hepatocellular carcinoma in mice[J]. Hepatology, 2015, 1(61): 171-183. DOI: 10.1002/hep.27380/abstract
    [12] ZHANG K, ZHANG M, YAO Q, et al. The hepatocyte-specifically expressed lnc-HSER alleviates hepatic fibrosis by inhibiting hepatocyte apoptosis and epithelial-mesenchymal transition[J]. Theranostics, 2019, 9(25): 7566-7582. DOI: 10.7150/thno.36942
    [13] CHEN T, LIN H, CHEN X, et al. LncRNA Meg8 suppresses activation of hepatic stellate cells and epithelial-mesenchymal transition of hepatocytes via the Notch pathway[J]. Biochem Biophys Res Commun, 2020, 521(4): 921-927. DOI: 10.1016/j.bbrc.2019.11.015
    [14] HE Y, WU YT, HUANG C, et al. Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis[J]. Biochim Biophys Acta, 2014, 1842(11): 2204-2215. DOI: 10.1016/j.bbadis.2014.08.015
    [15] ZHU J, LUO Z, PAN Y, et al. H19/miR-148a/USP4 axis facilitates liver fibrosis by enhancing TGF-β signaling in both hepatic stellate cells and hepatocytes[J]. J Cell Physiol, 2019, 234(6): 9698-9710. DOI: 10.1002/jcp.27656
    [16] ZHANG K, HAN X, ZHANG Z, et al. The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFβ and Notch pathways[J]. Nat Commun, 2017, 8(1): 144. DOI: 10.1038/s41467-017-00204-4
    [17] ZOU Y, LI S, LI Z, et al. MiR-146a attenuates liver fibrosis by inhibiting transforming growth factor-β1 mediated epithelial-mesenchymal transition in hepatocytes[J]. Cell Signal, 2019, 58: 1-8. DOI: 10.1016/j.cellsig.2019.01.012
    [18] WU K, YE C, LIN L, et al. Inhibiting miR-21 attenuates experimental hepatic fibrosis by suppressing both the ERK1 pathway in HSC and hepatocyte EMT[J]. Clin Sci (Lond), 2016, 130(16): 1469-1480. DOI: 10.1042/CS20160334
    [19] YU F, ZHENG Y, HONG W, et al. MicroRNA-200a suppresses epithelial-to-mesenchymal transition in rat hepatic stellate cells via GLI family zinc finger 2[J]. Mol Med Rep, 2015, 12(6): 8121-8128. DOI: 10.3892/mmr.2015.4452
    [20] DAI W, ZHAO J, TANG N, et al. MicroRNA-155 attenuates activation of hepatic stellate cell by simultaneously preventing EMT process and ERK1 signalling pathway[J]. Liver Int, 2015, 35(4): 1234-1243. DOI: 10.1111/liv.12660
    [21] GWON MG, AN HJ, KIM JY, et al. Anti-fibrotic effects of synthetic TGF-β1 and Smad oligodeoxynucleotide on kidney fibrosis in vivo and in vitro through inhibition of both epithelial dedifferentiation and endothelial-mesenchymal transitions[J]. FASEB J, 2020, 34(1): 333-349. DOI: 10.1096/fj.201901307RR
    [22] GWON MG, KIM JY, AN HJ, et al. Antifibrotic effect of smad decoy oligodeoxynucleotide in a CCl (4)-induced hepatic fibrosis animal model[J]. Molecules, 2018, 23(8): 1991. DOI: 10.3390/molecules23081991
    [23] KIM KH, LEE WR, KANG YN, et al. Inhibitory effect of nuclear factor-κB decoy oligodeoxynucleotide on liver fibrosis through regulation of the epithelial-mesenchymal transition[J]. Hum Gene Ther, 2014, 25(8): 721-729. DOI: 10.1089/hum.2013.106
    [24] HAO H, ZHANG D, SHI J, et al. Sorafenib induces autophagic cell death and apoptosis in hepatic stellate cell through the JNK and Akt signaling pathways[J]. Anticancer Drugs, 2016, 27(3): 192-203. DOI: 10.1097/CAD.0000000000000316
    [25] CHENG Y, ZHENG H, WANG B, et al. Sorafenib and fluvastatin synergistically alleviate hepatic fibrosis via inhibiting the TGFβ1/Smad3 pathway[J]. Dig Liver Dis, 2018, 50(4): 381-388. DOI: 10.1016/j.dld.2017.12.015
    [26] PRATAP A, SINGH S, MUNDRA V, et al. Attenuation of early liver fibrosis by pharmacological inhibition of smoothened receptor signaling[J]. J Drug Target, 2012, 20(9): 770-782. DOI: 10.3109/1061186X.2012.719900
    [27] ZHAO H, WANG Z, TANG F, et al. Carnosol-mediated Sirtuin 1 activation inhibits Enhancer of Zeste Homolog 2 to attenuate liver fibrosis[J]. Pharmacol Res, 2018, 128: 327-337. DOI: 10.1016/j.phrs.2017.10.013
    [28] PARK JH, PARK B, PARK KK. Suppression of hepatic epithelial-to-mesenchymal transition by melittin via blocking of TGFβ/Smad and MAPK-JNK signaling pathways[J]. Toxins (Basel), 2017, 9(4): 138. DOI: 10.3390/toxins9040138
    [29] CHUANG HM, HO LI, HUANG MH, et al. Non-canonical regulation of type I collagen through promoter binding of SOX2 and its contribution to ameliorating pulmonary fibrosis by butylidenephthalide[J]. Int J Mol Sci, 2018, 19(10): 3024. DOI: 10.3390/ijms19103024
    [30] TAI CJ, CHOONG CY, LIN YC, et al. The anti-hepatic fibrosis activity of ergosterol depended on upregulation of PPARgamma in HSC-T6 cells[J]. Food Funct, 2016, 7(4): 1915-1923. DOI: 10.1039/C6FO00117C
    [31] SONG YN, SUN JJ, LU YY, et al. Therapeutic efficacy of fuzheng-huayu tablet based traditional chinese medicine syndrome differentiation on hepatitis-B-caused cirrhosis: A multicenter double-blind randomized controlled trail[J]. Evid Based Complement Alternat Med, 2013, 2013: 709305.
    [32] YU F, LU Z, CHEN B, et al. Salvianolic acid B-induced microRNA-152 inhibits liver fibrosis by attenuating DNMT1-mediated Patched1 methylation[J]. J Cell Mol Med, 2015, 19(11): 2617-2632. DOI: 10.1111/jcmm.12655
    [33] REN S, YUE Q, WANG Q, et al. Cryptotanshinone suppresses liver fibrosis by attenuating epithelial-mesenchymal transition through targeting hedgehog pathway[J]. Anticancer Agents Med Chem, 2020.[Online ahead of print]
    [34] YANG YZ, ZHAO XJ, XU HJ, et al. Magnesium isoglycyrrhizinate ameliorates high fructose-induced liver fibrosis in rat by increasing miR-375-3p to suppress JAK2/STAT3 pathway and TGF-β1/Smad signaling[J]. Acta Pharmacol Sin, 2019, 40(7): 879-894. http://www.cqvip.com/QK/95561A/20197/7002551626.html
  • 加载中
计量
  • 文章访问数:  141
  • HTML全文浏览量:  17
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-05
  • 修回日期:  2020-08-03
  • 刊出日期:  2021-01-18
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回