留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肝泡型包虫病特异microRNA的筛选及初步研究

任宾 樊海宁 王海久 任利

任宾, 樊海宁, 王海久, 等. 肝泡型包虫病特异microRNA的筛选及初步研究[J]. 临床肝胆病杂志, 2021, 37(1): 135-141. DOI: 10.3969/j.issn.1001-5256.2021.01.027
引用本文: 任宾, 樊海宁, 王海久, 等. 肝泡型包虫病特异microRNA的筛选及初步研究[J]. 临床肝胆病杂志, 2021, 37(1): 135-141. DOI: 10.3969/j.issn.1001-5256.2021.01.027
REN B, FAN HN, WANG HJ, et al. Screening and a preliminary study of specific microRNA for hepatic alveolar echinococcosis[J]. J Clin Hepatol, 2021, 37(1): 135-141. DOI: 10.3969/j.issn.1001-5256.2021.01.027
Citation: REN B, FAN HN, WANG HJ, et al. Screening and a preliminary study of specific microRNA for hepatic alveolar echinococcosis[J]. J Clin Hepatol, 2021, 37(1): 135-141. DOI: 10.3969/j.issn.1001-5256.2021.01.027

肝泡型包虫病特异microRNA的筛选及初步研究

DOI: 10.3969/j.issn.1001-5256.2021.01.027
基金项目: 

国家重点研发计划项目 2017YFC0909900

青海省科技计划项目 2015-ZJ-753

详细信息
    作者简介:

    任宾(1981—)男,博士,副主任医师,主要从事肝脏疾病的临床与基础研究

    通讯作者:

    樊海宁,fanhaining@medmail.com.cn

  • 利益冲突声明:本研究不存在研究者、伦理委员会成员、受试者监护人以及与公开研究成果有关的利益冲突。
  • 作者贡献声明:任宾、任利负责确诊病例的收集,RNA的提取和文章的撰写; 樊海宁、王海久负责统计学分析和文章的修改。
  • 中图分类号: R575.2

Screening and a preliminary study of specific microRNA for hepatic alveolar echinococcosis

  • 摘要:   目的  肝泡型包虫病由多房棘球蚴感染造成,通过对肝泡型包虫病患者组织和血浆中差异表达的miRNA进行筛查,寻找肝泡型包虫病新的生物标志物。  方法  纳入2016年6月—2018年5月在青海大学附属医院确诊的肝泡型包虫病患者,选取2例肝泡型包虫病患者的病灶边缘组织和3例临近病灶边缘的正常组织,以及3例肝泡型包虫病患者和3例健康对照者的血浆样本,使用Agilent Human miRNA芯片检测组织和血浆的miRNA表达谱,根据差异倍数(FC>1.2)和P值(P<0.05)筛选差异表达的miRNA,根据差异miRNA的靶基因预测结果,结合文献报道,选择与肝脏疾病相关的血浆miRNA和组织miRNA进行实时荧光定量PCR(qRT-PCR)验证。计量资料2组间比较采用t检验,相关性分析采用Spearman相关分析。  结果  肝泡型包虫病患者中的microRNA表达谱与健康人相比有显著不同,qRT-PCR验证发现6个microRNA中有3个miRNA(hsa-miR-4644,hsa-miR-136-5p,hsa-miR-483-3p)在肝泡型包虫病患者中显著差异表达(P<0.05)。其中hsa-miR-4644和hsa-miR-483-3p在肝泡型包虫病患者中显著上调表达(P值均<0.05),hsa-miR-136-5p显著下调表达(P<0.05)。通过TargetScan,PITA,microRNAorg数据库对差异miRNA进行靶基因预测,对三个数据库预测到的靶基因取交集,共有137个基因和miRNA之间有靶向关系。差异的hsa-miR-483-3p靶向调控参与人体免疫反应及与肝脏疾病有关的基因(IL-17A,IL-5,CD40LG,TAP2,TNF)。通过GO与KEGG分析发现,hsa-miR-483-3p的靶基因在免疫缺陷(Primary immunodeficiency)信号通路,IL-17信号通路,TNF信号通路中起重要作用。  结论  肝泡型包虫病有独特的microRNA表达谱,其中hsa-miR-483-3p可作为肝泡型包虫病的一种新的生物学标志物,其调控的靶基因主要参与Primary immunodeficiency信号通路,IL-17信号通路,TNF信号通路。但这些miRNA与肝泡型包虫病之间的调控关系有待进一步验证。
  • 图  1  miRNA表达谱中差异miRNA的火山图

    注:a, 血浆样本; b, 组织样本。灰色点,P>0.05的miRNA; 绿色点,log2(差异倍数)绝对值<1.2但P<0.05的miRNA; 红色点,log2(差异倍数)绝对值>1.2且P<0.05显著性上调的差异miRNA; 蓝色点,log2(差异倍数)绝对值>1.2且P<0.05显著性下调的差异miRNA。

    图  2  差异miRNA在不同的数据库中靶基因预测结果

    图  3  miRNA的主要靶基因的GO分析的生物过程

    注:按照P值排序,对前20位的条目(若总条目不大于20,则全部展示)利用条形图进行展示。

    图  4  miRNA的主要靶基因的Pathway分析的生物过程

    注:按照P值排序,对前20位的条目(若总条目不大 于20,则全部展示)利用条形图进行展示。

    表  1  AE患者miRNA表达谱中的差异miRNA

    样本类型 基因名称 P 差异倍数 趋势 mirbase编号
    血浆
    hsa-miRNA-136-5p <0.001 16.725 下调 MIMAT0000448
    hsa-miRNA-4698 <0.001 22.626 下调 MIMAT0019793
    hsa-miRNA-4644 0.044 10.077 上调 MIMAT0019704
    hsa-miRNA-4306 0.026 2.150 下调 MIMAT0016858
    hsa-miRNA-483-3p 0.032 3.877 上调 MIMAT0002173
    组织
    hsa-miRNA-1237-3p 0.016 10.928 上调 MIMAT0005592
    hsa-miRNA-4306 0.015 41.615 下调 MIMAT0016858
    hsa-miRNA-483-3p 0.045 8.868 上调 MIMAT0002173
    下载: 导出CSV

    表  2  血浆中差异miRNA水平影响分析

    组别 例数 miRNA-136-5p miRNA-4698 miRNA-4644 miRNA-4306 miRNA-483-3p
    健康组 15 1.017±0.189 1.137±0.640 1.030±0.271 1.048±0.317 1.012±0.165
    AE组 15 0.485±0.171 0.748±0.372 1.642±0.718 0.840±0.285 2.213±1.294
    t 8.084 2.033 -3.091 1.891 -3.563
    P <0.001 0.052 0.006 0.069 0.003
    下载: 导出CSV

    表  3  AE组患者组织中差异miRNA水平影响分析

    组别 例数 miRNA-1237-3p miRNA-4306 miRNA-483-3p
    正常组织 15 1.022±0.226 1.022±0.214 1.007±0.123
    病灶边缘组织 15 1.165±0.249 0.919±0.185 1.941±0.907
    t -1.643 1.418 -3.952
    P 0.112 0.167 0.001
    下载: 导出CSV
  • [1] WANG TP, CAO ZG. Current status of echinococcosis control in China and the existing challenges[J]. Chin J Parasitol Parasitic Dis, 2018, 36(3): 291-296. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSB201803018.htm

    汪天平, 操治国. 中国棘球蚴病防控进展及其存在的问题[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(3): 291-296. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSB201803018.htm
    [2] MOSS JE, CHEN X, LI T, et al. Reinfection studies of canine echinococcosis and role of dogs in transmission of Echinococcus multilocularis in Tibetan communities, Sichuan, China[J]. Parasitology, 2013, 140(13): 1685-1692. DOI: 10.1017/S0031182013001200
    [3] YAN CB, MURAT H, CHEN JJ, et al. The study of the CT image retrieval method about the xingjing local liver hydatid disease which has a higher incidence based on the image of Gray-level histogram features[J]. Bulletin Sci Technol, 2013, 29(3): 76-79. (in Chinese) DOI: 10.3969/j.issn.1001-7119.2013.03.015

    严传波, 木拉提·哈米提, 陈建军, 等. 基于新疆地方性高发病肝包虫病CT图像灰度直方图特征检索方法的研究[J]. 科技通报, 2013, 29(3): 76-79. DOI: 10.3969/j.issn.1001-7119.2013.03.015
    [4] HUANG SB, MI YY, LIU AQ, et al. The status and progression in the Diagnosis of Hepati echinococcosis[J]. Prog Mod Biomed, 2016, 16(4): 797-799. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWCX201604049.htm

    黄士波, 米圆圆, 刘爱琴, 等. 肝包虫病的诊断现状及进展[J]. 现代生物医学进展, 2016, 16(4): 797-799. https://www.cnki.com.cn/Article/CJFDTOTAL-SWCX201604049.htm
    [5] OUYANG X, JIANG X, GU D, et al. Dysregulated serum miRNA profile and promising biomarkers in dengue-infected patients[J]. Int J Med Sci, 2016, 13(3): 195-205. DOI: 10.7150/ijms.13996
    [6] SRINIVASAN S, SELVAN ST, ARCHUNAN G, et al. MicroRNAs-the next generation therapeutic targets in human diseases[J]. Theranostics, 2013, 3(12): 930-942. DOI: 10.7150/thno.7026
    [7] XU MJ, ZHOU DH, NISBET AJ, et al. Characterization of mouse brain microRNAs after infection with cyst-forming Toxoplasma gondii[J]. Parasit Vectors, 2013, 6: 154. DOI: 10.1186/1756-3305-6-154
    [8] ZHENG Y, CAI X, BRADLEY JE. microRNAs in parasites and parasite infection[J]. RNA Biol, 2013, 10(3): 371-379. DOI: 10.4161/rna.23716
    [9] JIN X, GUO X, ZHU D, et al. miRNA profiling in the mice in response to Echinococcus multilocularis infection[J]. Acta Trop, 2017, 166: 39-44. DOI: 10.1016/j.actatropica.2016.10.024
    [10] ZHENG Y, CAI X, BRADLEY JE. microRNAs in parasites and parasite infection[J]. RNA Biol, 2013, 10(3): 371-379. DOI: 10.4161/rna.23716
    [11] JUDICE CC, BOURGARD C, KAYANO AC, et al. MicroRNAs in the host-apicomplexan parasites interactions: Areview of immunopathological aspects[J]. Front Cell Infect Microbiol. 2016, 6: 5 http://www.ncbi.nlm.nih.gov/pubmed/26870701
    [12] MANZANO-ROMÁN R, SILES-LUCAS M. MicroRNAs in parasitic diseases: Potential for diagnosis and targeting[J]. Mol Biochem Parasitol, 2012, 186(2): 81-86. DOI: 10.1016/j.molbiopara.2012.10.001
    [13] CHENG G, LUO R, HU C, et al. Deep sequencing-based identification of pathogen-specific microRNAs in the plasma of rabbits infected with Schistosoma japonicum[J]. Parasitology, 2013, 140(14): 1751-1761. DOI: 10.1017/S0031182013000917
    [14] HOY AM, LUNDIE RJ, IVENS A, et al. Parasite-derived microRNAs in host serum as novel biomarkers of helminth infection[J]. PLoS Negl Trop Dis, 2014, 8(2): e2701. DOI: 10.1371/journal.pntd.0002701
    [15] BRASE JC, WUTTIG D, KUNER R, et al. Serum microRNAs as non-invasive biomarkers for cancer[J]. Mol Cancer, 2010, 9: 306. DOI: 10.1186/1476-4598-9-306
    [16] ZHENG H, LIU JY, SONG FJ, et al. Advances in circulating microRNAs as diagnostic and prognostic markers for ovarian cancer[J]. Cancer Biol Med, 2013, 10(3): 123-130. http://europepmc.org/articles/PMC3860338
    [17] KINET V, HALKEIN J, DIRKX E, et al. Cardiovascular extracellular microRNAs: Emerging diagnostic markers and mechanisms of cell-to-cell RNA communication[J]. Front Genet, 2013, 4: 214. http://europepmc.org/abstract/med/24273550
    [18] TREBICKA J, ANADOL E, ELFIMOVA N, et al. Hepatic and serum levels of miR-122 after chronic HCV-induced fibrosis[J]. J Hepatol, 2013, 58(2): 234-239. DOI: 10.1016/j.jhep.2012.10.015
    [19] GRASEDIECK S, SORRENTINO A, LANGER C, et al. Circulating microRNAs in hematological diseases: Principles, challenges, and perspectives[J]. Blood, 2013, 121(25): 4977-4984. DOI: 10.1182/blood-2013-01-480079
    [20] HE X, SAI X, CHEN C, et al. Host serum miR-223 is a potential new biomarker for Schistosoma japonicum infection and the response to chemotherapy[J]. Parasit Vectors, 2013, 6: 272.
    [21] Chinese College of Surgeons(CCS)Chinese Committee for Hadytidology (CCH). Expert consensus on the diagnosis and treatment of hepatic cystic and alveolar echinococcosis(2015 edition)[J]Chin J Dig Surg, 2015, 14(4): 253-264. DOI: 10.3760/cma.j.issn.1673-9752.2015.04.001

    中国医师协会外科医师分会包虫病外科专业委员会. 肝两型包虫病诊断与治疗专家共识(2015版)[J]. 中华消化外科杂志, 2015, 14(4): 253-264. DOI: 10.3760/cma.j.issn.1673-9752.2015.04.001
    [22] WANG JF, YU ML, YU G, et al. Serum miR-146a and miR-223 as potential new biomarkers for sepsis[J]. Biochem Biophys Res Commun, 2010, 394(1): 184-188.
    [23] CICALESE MP, GEROSA J, BARONIO M, et al. Circulating follicular helper and follicular regulatory T cells are severely compromised in human CD40 deficiency: A case report[J]. Front Immunol, 2018, 9: 1761. http://www.ncbi.nlm.nih.gov/pubmed/30131802
    [24] ZOU MX, HUANG W, WANG XB, et al. Reduced expression of miRNA-1237-3p associated with poor survival of spinal chordoma patients[J]. Eur Spine J, 2015, 24(8): 1738-1746.
    [25] NTOUMOU E, TZETIS M, BRAOUDAKI M, et al. Serum microRNA array analysis identifies miR-140-3p, miR-33b-3p and miR-671-3p as potential osteoarthritis biomarkers involved in metabolic processes[J]. Clin Epigenetics, 2017, 9: 127. DOI: 10.1186/s13148-017-0428-1
    [26] VASURI F, FITTIPALDI S, De PACE V, et al. Tissue miRNA 483-3p expression predicts tumor recurrence after surgical resection in histologically advanced hepatocellular carcinomas[J]. Oncotarget, 2018, 9(25): 17895-17905.
    [27] LUPINI L, PEPE F, FERRACIN M, et al. Over-expression of the miR-483-3p overcomes the miR-145/TP53 pro-apoptotic loop in hepatocellular carcinoma[J]. Oncotarget, 2016, 7(21): 31361-31371. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5058762/
    [28] HESS J, UNGER K, MAIHOEFER C, et al. A five-microRNA signature predicts survival and disease control of patients with head and neck cancer negative for HPV infection[J]. Clin Cancer Res, 2019, 25(5): 1505-1516. http://www.ncbi.nlm.nih.gov/pubmed/30171046
    [29] HAMAM R, HAMAM D, ALSALEH KA, et al. Circulating microRNAs in breast cancer: Novel diagnostic and prognostic biomarkers[J]. Cell Death Dis, 2017, 8(9): e3045. http://europepmc.org/abstract/MED/28880270
    [30] GIANNOPOULOU L, ZAVRIDOU M, KASIMIR-BAUER S, et al. Liquid biopsy in ovarian cancer: The potential of circulating miRNAs and exosomes[J]. Transl Res, 2019, 205: 77-91.
    [31] GUAY C, REGAZZI R. Circulating microRNAs as novel biomarkers for diabetes mellitus[J]. Nat Rev Endocrinol, 2013, 9(9): 513-521. http://www.nature.com/nrendo/journal/v9/n9/abs/nrendo.2013.86.html
    [32] GANDHI R, HEALY B, GHOLIPOUR T, et al. Circulating microRNAs as biomarkers for disease staging in multiple sclerosis[J]. Ann Neurol, 2013, 73(6): 729-740.
    [33] KHOO SK, PETILLO D, KANG UJ, et al. Plasma-based circulating MicroRNA biomarkers for Parkinson's disease[J]. J Parkinsons Dis, 2012, 2(4): 321-331.
    [34] ABUE M, YOKOYAMA M, SHIBUYA R, et al. Circulating miR-483-3p and miR-21 is highly expressed in plasma of pancreatic cancer[J]. Int J Oncol, 2015, 46(2): 539-547. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4277249/
    [35] BERTERO T, GASTALDI C, BOURGET-PONZIO I, et al. miR-483-3p controls proliferation in wounded epithelial cells[J]. FASEB J, 2011, 25(9): 3092-3105. http://www.ncbi.nlm.nih.gov/pubmed/21676945?dopt=AbstractPlus
    [36] PEPE F, VISONE R, VERONESE A. The glucose-regulated miR-483-3p influences key signaling pathways in cancer[J]. Cancers (Basel), 2018, 10(6): 181. DOI: 10.3390/cancers10060181
    [37] ABUE M, YOKOYAMA M, SHIBUYA R, et al. Circulating miR-483-3p and miR-21 is highly expressed in plasma of pancreatic cancer[J]. Int J Oncol, 2015, 46(2): 539-547. DOI: 10.3892/ijo.2014.2743
    [38] KUSCHNERUS K, STRAESSLER ET, MVLLER MF, et al. Increased expression of miR-483-3p impairs the vascular response to injury in type 2 diabetes[J]. Diabetes, 2019, 68(2): 349-360. DOI: 10.2337/db18-0084
    [39] QIAO Y, ZHAO Y, LIU Y, et al. miR-483-3p regulates hyperglycaemia-induced cardiomyocyte apoptosis in transgenic mice[J]. Biochem Biophys Res Commun, 2016, 477(4): 541-547. DOI: 10.1016/j.bbrc.2016.06.051
    [40] GUO X, ZHENG Y. Expression profiling of circulating miRNAs in mouse serum in response to Echinococcus multilocularis infection[J]. Parasitology, 2017, 144(8): 1079-1087. DOI: 10.1017/S0031182017000300
    [41] ZHANG J, LIU B, LI Y, et al. Comparison of serum immunoglobulin levels in patients with alveolar and cystic echinococcosis[J]. Chin J Parasitol Parasitic Dis, 1990, 8(1): 38-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSB199001018.htm

    张京元, 刘波, 李燕宾, 等. 泡球蚴病和棘球蚴病患者血清IgG、IgA和IgM水平比较[J]. 中国寄生虫学与寄生虫病杂志, 1990, 8(1): 38-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSB199001018.htm
    [42] WANG H, LI J, PU H, et al. Echinococcus granulosus infection reduces airway inflammation of mice likely through enhancing IL-10 and down-regulation of IL-5 and IL-17A[J]. Parasit Vectors, 2014, 7: 522. DOI: 10.1186/s13071-014-0522-6
    [43] GIANNIOS I, CHATZANTONAKI E, GEORGATOS S. Dynamics and structure-function relationships of the lamin B receptor (LBR)[J]. PLoS One, 2017, 12(1): e0169626. DOI: 10.1371/journal.pone.0169626
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  13
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-20
  • 修回日期:  2020-10-19
  • 刊出日期:  2021-01-18
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回