中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物钟基因在非酒精性脂肪性肝病发生发展中的作用

艾燕 杨小倩 潘晓莉 叶进

引用本文:
Citation:

生物钟基因在非酒精性脂肪性肝病发生发展中的作用

DOI: 10.3969/j.issn.1001-5256.2019.10.043
基金项目: 

国家自然科学基金资助项目(81770582,81500444); 

详细信息
  • 中图分类号: R575.5

Role of circadian clock genes in the development and progression of nonalcoholic fatty liver disease

Research funding: 

 

  • 摘要: 生物钟是生物体为了适应昼夜交替引起的光照、温度等变化而在漫长的进化过程中形成的内在变化节律。人类生物钟在分子水平上由多个生物钟基因精确调控;在解剖水平上由中枢生物钟和外周生物钟分级调控。近年来研究发现,生物钟基因可通过对下游钟控基因的调控参与细胞内的脂质代谢,并且有研究证实生物钟基因紊乱可导致与非酒精性脂肪性肝病(NAFLD)发病密切相关的脂代谢异常、氧化应激、胰岛素抵抗、糖皮质激素及炎症因子分泌异常等,生物钟基因的紊乱可增加临床上脂肪肝的易感性,这可以作为生物钟基因和NAFLD相关性研究的桥梁。现阶段NAFLD的发病机制尚不明确,综述了近年来国内外对生物钟基因及NAFLD的研究,旨在为进一步明确NAFLD的发病机制提供理论基础。

     

  • [1] ESLAM M,GEORGE J. Genetic and epigenetic mechanisms of NASH[J]. Hepatol Int,2016,10(3):394-406.
    [2] YANG YL,ZHENG LY,GU WM,et al. Effect of total glucosides of paeony regulate HMGB1,RAGE pathway on nonalcoholic fatty liver disease in rats[J]. Chin J Clin Pharmacol Ther,2017,22(6):611-616.(in Chinese)杨以琳,郑琳颖,古伟明,等.白芍总苷对非酒精性脂肪性肝病大鼠HMGB1、RAGE通路的调控作用[J].中国临床药理学与治疗学,2017,22(6):611-616.
    [3] YOUNOSSI ZM,KOENIG AB,ABDELATIF D,et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology,2016,64(1):73-84.
    [4] MENG YL,ZHANG HY,SONG BG,et al. An investigation of the prevalence rate of fatty liver disease among people undergoing physical examination in Tangshan,China[J]. J Clin Hepatol,2017,33(12):2376-2380.(in Chinese)孟昱林,张海艳,宋宝国,等.唐山市体检人群脂肪肝患病率调查分析[J].临床肝胆病杂志,2017,33(12):2376-2380.
    [5] DIBNER C,SCHIBLER U,ALBRECHT U. The mammalian circadian timing system:Organization and coordination of central and peripheral clocks[J]. Annu Rev Physiol,2010,72:517-549.
    [6] MOHAWK JA,GREEN CB,TAKAHASHI JS. Central and peripheral circadian clocks in mammals[J]. Annu Rev Neurosci,2012,35:445-462.
    [7] GLASER FT,STANEWSKY R. Synchronization of the drosophila circadian clock by temperature cycles[J]. Cold Spring Harb Symp Quant Biol,2007,72:233-242.
    [8] DAMIOLA F,LE MINH N,PREITNER N,et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus[J].Genes Dev,2000,14(23):2950-2961.
    [9] KING DP,ZHAO Y,SANGORAM AM,et al. Positional cloning of the mouse circadian clock gene[J]. Cell,1997,89(4):641-653.
    [10] LANDOLT HP. CIRCADIAN RHYTHMS. Caffeine,the circadian clock,and sleep[J]. Science,2015,349(6254):1289.
    [11] CHO H,ZHAO X,HATORI M,et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REVERB-beta[J]. Nature,2012,485(7396):123-127.
    [12] BERSTEN DC,SULLIVAN AE,PEET DJ,et al. bHLH-PAS proteins in cancer[J]. Nat Rev Cancer,2013,13(12):827-841.
    [13] MAZZOCCOLI G,PAZIENZA V,VINCIGUERRA M. Clock genes and clock-controlled genes in the regulation of metabolic rhythms[J]. Chronobiol Int,2012,29(3):227-251.
    [14] WILLEBRORDS J,PEREIRA IV,MAES M,et al. Strategies,models and biomarkers in experimental non-alcoholic fatty liver disease research[J]. Prog Lipid Res,2015,59:106-125.
    [15] FANG YL,CHEN H,WANG CL,et al. Pathogenesis of nonalcoholic fatty liver disease in children and adolescence:From“two hit theory”to“multiple hit model”[J]. World J Gastroenterol,2018,24(27):2974-2983.
    [16] ONYEKWERE CA,OGBERA AO,SAMAILA AA,et al. Nonalcoholic fatty liver disease:Synopsis of current developments[J]. Niger J Clin Pract,2015,18(6):703-712.
    [17] WEI GC,HE JY. Traditional Chinese medicine intervention to nonalcoholic fatty liver disease based on physique identi cation[J]. J Changchun Univ Chin Med,2018,34(3):518-521.(in Chinese)魏功昌,何瑾瑜.中医体质辨识治疗非酒精性脂肪性肝病[J].长春中医药大学学报,2018,34(3):518-521.
    [18] REBRIN K,STEIL GM,MITTELMAN SD,et al. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs[J]. J Clin Invest,1996,98(3):741-749.
    [19] SHULMAN GI. Ectopic fat in insulin resistance,dyslipidemia,and cardiometabolic disease[J]. N Engl J Med,2014,371(23):2237-2238.
    [20] SACHDEV MS,RIELY CA,MADAN AK. Nonalcoholic fatty liver disease of obesity[J]. Obes Surg,2006,16(11):1412-1419.
    [21] CARDOSO AR,CABRAL-COSTA JV,KOWALTOWSKI AJ. Effects of a high fat diet on liver mitochondria:Increased ATP-sensitive K+channel activity and reactive oxygen species generation[J]. J Bioenerg Biomembr,2010,42(3):245-253.
    [22] FELDSTEIN AE,WERNEBURG NW,CANBAY A,et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway[J]. Hepatology,2004,40(1):185-194.
    [23] TOMITA K,TAMIYA G,ANDO S,et al. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice[J]. Gut,2006,55(3):415-424.
    [24] PAZ-FILHO G,MASTRONARDI C,FRANCO CB,et al. Leptin:Molecular mechanisms, systemic pro-inflammatory effects,and clinical implications[J]. Arq Bras Endocrinol Metabol,2012,56(9):597-607.
    [25] KAPIL S,DUSEJA A,SHARMA BK,et al. Small intestinal bacterial overgrowth andtoll-like receptor signaling in patients with non-alcoholic fatty liver disease[J]. J Gastroenterol Hepatol,2016,31(1):213-221.
    [26] LANASPA MA,SANCHEZ-LOZADA LG,CHOI YJ,et al.Uric acid induces heaptic steatosis by generation of mitochondrial oxidative stress:Potential role in fructose-dependent and-independent fatty liver[J]. J Biol Chem,2012,287(48):40732-40744.
    [27] GIUDICE EM,GRANDONE A,CIRILLO G,et al. The association of PNPLA3 variants with liver enzymes in childhood obesity is driven by the interaction with abdominal fat[J]. PLo S One,2011,6(11):e27933.
    [28] ZANI F,BREASSON L,BECATTINI B,et al. PER2 promotes glucose storage to liver glycogen during feeding and acute fasting by inducing Gys2 PTG and G L expression[J]. Mol Metab,2013,2(3):292-305.
    [29] GRIMALDI B,BELLET MM,KATADA S,et al. PER2 controls lipid metabolism by direct regulation of PPARgamma[J]. Cell Metab,2010,12(5):509-520.
    [30] ZHOU D,WANG Y,CHEN L,et al. Evolving roles of circadian rhythms in liver homeostasis and pathology[J]. Oncotarget,2016,7(8):8625-8639.
    [31] MARION-LETELLIER R,SAVOYE G,GHOSH S. Fatty acids,eicosanoids and PPAR gamma[J]. Eur J Pharmacol,2016,785:44-49.
    [32] YANG G,JIA Z,AOYAGI T,et al. Systemic PPARgamma deletion impairs circadian rhythms of behavior and metabolism[J]. PLo S One,2012,7(8):e38117.
    [33] LI S,LIN JD. Molecular control of circadian metabolic rhythms[J]. J Appl Physiol(1985),2009,107(6):1959-1964.
    [34] FU J,GAETANI S,OVEISI F,et al. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha[J]. Nature,2003,425(6953):90-93.
    [35] CHO H,ZHAO X,HATORI M,et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REVERB-beta[J]. Nature,2012,485(7396):123-127.
    [36] TAHARA Y,SHIBATA S. Circadian rhythms of liver physiology and disease:Experimental and clinical evidence[J]. Nat Rev Gastroenterol Hepatol,2016,13(4):217-226.
    [37] LAMIA KA,PAPP SJ,YU RT,et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor[J]. Nature,2011,480(7378):552-556.
    [38] SUN S,ZHOU L,YU Y,et al. Knocking down clock control gene CRY1 decreases adipogenesis via canonical Wnt/betacatenin signaling pathway[J]. Biochem Biophys Res Commun,2018,506(3):746-753.
    [39] ZHANG EE,LIU Y,DENTIN R,et al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis[J]. Nat Med,2010,16(10):1152-1156.
    [40] MARCHEVA B,RAMSEY KM,BUHR ED,et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes[J]. Nature,2010,466(7306):627-631.
    [41] LAMIA KA,STORCH KF,WEITZ CJ. Physiological significance of a peripheral tissue circadian clock[J]. Proc Natl Acad Sci U S A,2008,105(39):15172-15177.
    [42] JACOBI D,LIU S,BURKEWITZ K,et al. Hepatic bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness[J]. Cell Metab,2015,22(4):709-720.
    [43] DUMBELL R,MATVEEVA O,OSTER H. Circadian clocks,stress,and immunity[J]. Front Endocrinol(Lausanne),2016,7:37.
    [44] ASTIZ M,OSTER H. Perinatal programming of circadian clock-stress crosstalk[J]. Neural Plast,2018,2018:5689165.
    [45] YANG S,LIU A,WEIDENHAMMER A,et al. The role of m Per2clock gene in glucocorticoid and feeding rhythms[J]. Endocrinology,2009,150(5):2153-2160.
    [46] RUTTER J,REICK M,WU LC,et al. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors[J].Science,2001,293(5529):510-514.
    [47] ASHER G,SCHIBLER U. Crosstalk between components of circadian and metabolic cycles in mammals[J]. Cell Metab,2011,13(2):125-137.
    [48] KIL IS,LEE SK,RYU KW,et al. Feedback control of adrenal steroidogenesis via H2O2-dependent,reversible inactivation of peroxiredoxin III in mitochondria[J]. Mol Cell,2012,46(5):584-594.
    [49] NEUFELD-COHEN A,ROBLES MS,AVIRAM R,et al. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins[J]. Proc Natl Acad Sci U S A,2016,113(12):e1673-e1682.
  • 加载中
计量
  • 文章访问数:  767
  • HTML全文浏览量:  18
  • PDF下载量:  289
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-20
  • 出版日期:  2019-10-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回