[1] |
YOUNOSSI Z, ANSTEE QM, MARIETTI M, et al. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 11-20. DOI: 10.1038/nrgastro.2017.109.
|
[2] |
ZHOU F, ZHOU J, WANG W, et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: A systematic review and meta-analysis[J]. Hepatology, 2019, 70(4): 1119-1133. DOI: 10.1002/hep.30702.
|
[3] |
YOUNES R, BUGIANESI E. Should we undertake surveillance for HCC in patients with NAFLD?[J]. J Hepatol, 2018, 68(2): 326-334. DOI: 10.1016/j.jhep.2017.10.006.
|
[4] |
BYRNE CD, TARGHER G. NAFLD: A multisystem disease[J]. J Hepatol, 2015, 62(1 Suppl): s47-s64. DOI: 10.1016/j.jhep.2014.12.012.
|
[5] |
CARMODY RN, GERBER GK, LUEVANO JM Jr, et al. Diet dominates host genotype in shaping the murine gut microbiota[J]. Cell Host Microbe, 2015, 17(1): 72-84. DOI: 10.1016/j.chom.2014.11.010.
|
[6] |
LIU JP, ZOU WL, CHEN SJ, et al. Effects of different diets on intestinal microbiota and nonalcoholic fatty liver disease development[J]. World J Gastroenterol, 2016, 22(32): 7353-7364. DOI: 10.3748/wjg.v22.i32.7353.
|
[7] |
DAVID LA, MAURICE CF, CARMODY RN, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014, 505(7484): 559-563. DOI: 10.1038/nature12820.
|
[8] |
KIM H, WORSLEY O, YANG E, et al. Persistent changes in liver methylation and microbiome composition following reversal of diet-induced non-alcoholic-fatty liver disease[J]. Cell Mol Life Sci, 2019, 76(21): 4341-4354. DOI: 10.1007/s00018-019-03114-4.
|
[9] |
ARUMUGAM M, RAES J, PELLETIER E, et al. Enterotypes of the human gut microbiome[J]. Nature, 2011, 473(7346): 174-180. DOI: 10.1038/nature09944.
|
[10] |
COSTEA PI, HILDEBRAND F, ARUMUGAM M, et al. Enterotypes in the landscape of gut microbial community composition[J]. Nat Microbiol, 2018, 3(1): 8-16. DOI: 10.1038/s41564-017-0072-8.
|
[11] |
MOUZAKI M, COMELLI EM, ARENDT BM, et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease[J]. Hepatology, 2013, 58(1): 120-127. DOI: 10.1002/hep.26319.
|
[12] |
BOURSIER J, MUELLER O, BARRET M, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota[J]. Hepatology, 2016, 63(3): 764-775. DOI: 10.1002/hep.28356.
|
[13] |
LOOMBA R, SEGURITAN V, LI W, et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease[J]. Cell Metab, 2017, 25(5): 1054-1062.e5. DOI: 10.1016/j.cmet.2017.04.001.
|
[14] |
VERDAM FJ, FUENTES S, DE JONGE C, et al. Human intestinal microbiota composition is associated with local and systemic inflammation in obesity[J]. Obesity (Silver Spring), 2013, 21(12): e607-e615. DOI: 10.1002/oby.20466.
|
[15] |
de FILIPPO C, CAVALIERI D, di PAOLA M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa[J]. Proc Natl Acad Sci U S A, 2010, 107(33): 14691-14696. DOI: 10.1073/pnas.1005963107.
|
[16] |
JAIN A, LI XH, CHEN WN. Similarities and differences in gut microbiome composition correlate with dietary patterns of Indian and Chinese adults[J]. AMB Express, 2018, 8(1): 104. DOI: 10.1186/s13568-018-0632-1.
|
[17] |
LIN A, BIK EM, COSTELLO EK, et al. Distinct distal gut microbiome diversity and composition in healthy children from Bangladesh and the United States[J]. PLoS One, 2013, 8(1): e53838. DOI: 10.1371/journal.pone.0053838.
|
[18] |
KLIMENKO NS, TYAKHT AV, POPENKO AS, et al. Microbiome responses to an uncontrolled short-term diet intervention in the frame of the citizen science project[J]. Nutrients, 2018, 10(5): 576. DOI: 10.3390/nu10050576.
|
[19] |
WU GD, CHEN J, HOFFMANN C, et al. Linking long-term dietary patterns with gut microbial enterotypes[J]. Science, 2011, 334(6052): 105-108. DOI: 10.1126/science.1208344.
|
[20] |
SHANKAR V, GOUDA M, MONCIVAIZ J, et al. Differences in gut metabolites and microbial composition and functions between Egyptian and U.S. children are consistent with their diets[J]. mSystems, 2017, 2(1): e00169-16. DOI: 10.1128/mSystems.00169-16.
|
[21] |
NEWGARD CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance[J]. Cell Metab, 2012, 15(5): 606-614. DOI: 10.1016/j.cmet.2012.01.024.
|
[22] |
BOURSIER J, MUELLER O, BARRET M, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota[J]. Hepatology, 2016, 63(3): 764-775. DOI: 10.1002/hep.28356.
|
[23] |
YATSUNENKO T, REY FE, MANARY MJ, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402): 222-227. DOI: 10.1038/nature11053.
|
[24] |
OU J, CARBONERO F, ZOETENDAL EG, et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans[J]. Am J Clin Nutr, 2013, 98(1): 111-120. DOI: 10.3945/ajcn.112.056689.
|
[25] |
RUENGSOMWONG S, LA-ONGKHAM O, JIANG J, et al. Microbial community of healthy thai vegetarians and non-vegetarians, their core gut microbiota, and pathogen risk[J]. J Microbiol Biotechnol, 2016, 26(10): 1723-1735. DOI: 10.4014/jmb.1603.03057.
|
[26] |
MATIJAŠI C ' BB, OBERMAJER T, LIPOGLAVŠEK L, et al. Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia[J]. Eur J Nutr, 2014, 53(4): 1051-1064. DOI: 10.1007/s00394-013-0607-6.
|
[27] |
CHEN T, LONG W, ZHANG C, et al. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota[J]. Sci Rep, 2017, 7(1): 2594. DOI: 10.1038/s41598-017-02995-4.
|
[28] |
SCOTT KP, ANTOINE JM, MIDTVEDT T, et al. Manipulating the gut microbiota to maintain health and treat disease[J]. Microb Ecol Health Dis, 2015, 26: 25877. DOI: 10.3402/mehd.v26.25877.
|
[29] |
CHRISTOPHERSON MR, DAWSON JA, STEVENSON DM, et al. Unique aspects of fiber degradation by the ruminal ethanologen Ruminococcus albus 7 revealed by physiological and transcriptomic analysis[J]. BMC Genomics, 2014, 15: 1066. DOI: 10.1186/1471-2164-15-1066.
|
[30] |
MENNI C, LIN C, CECELJA M, et al. Gut microbial diversity is associated with lower arterial stiffness in women[J]. Eur Heart J, 2018, 39(25): 2390-2397. DOI: 10.1093/eurheartj/ehy226.
|
[31] |
O'SULLIVAN A, HE X, MCNIVEN EM, et al. Early diet impacts infant rhesus gut microbiome, immunity, and metabolism[J]. J Proteome Res, 2013, 12(6): 2833-2845. DOI: 10.1021/pr4001702.
|
[32] |
TANG M, FRANK DN, TSHEFU A, et al. Different gut microbial profiles in Sub-Saharan African and South Asian women of childbearing age are primarily associated with dietary intakes[J]. Front Microbiol, 2019, 10: 1848. DOI: 10.3389/fmicb.2019.01848.
|
[33] |
WHISNER CM, MALDONADO J, DENTE B, et al. Diet, physical activity and screen time but not body mass index are associated with the gut microbiome of a diverse cohort of college students living in university housing: A cross-sectional study[J]. BMC Microbiol, 2018, 18(1): 210. DOI: 10.1186/s12866-018-1362-x.
|
[34] |
ISHⅡ C, NAKANISHI Y, MURAKAMI S, et al. A metabologenomic approach reveals changes in the intestinal environment of mice fed on American diet[J]. Int J Mol Sci, 2018, 19(12). DOI: 10.3390/ijms19124079.
|
[35] |
MARTINEZ-MEDINA M, DENIZOT J, DREUX N, et al. Western diet induces dysbiosis with increased E coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation[J]. Gut, 2014, 63(1): 116-124. DOI: 10.1136/gutjnl-2012-304119.
|
[36] |
SIMPSON HL, CAMPBELL BJ. Review article: Dietary fibre-microbiota interactions[J]. Aliment Pharmacol Ther, 2015, 42(2): 158-179. DOI: 10.1111/apt.13248.
|
[37] |
MÉNDEZ-SALAZAR EO, ORTIZ-LÓPEZ MG, MLÁ G, et al. Altered gut microbiota and compositional changes in firmicutes and proteobacteria in mexican undernourished and obese children[J]. Front Microbiol, 2018, 9: 2494. DOI: 10.3389/fmicb.2018.02494.
|
[38] |
NEGRONI A, COSTANZO M, VITALI R, et al. Characterization of adherent-invasive Escherichia coli isolated from pediatric patients with inflammatory bowel disease[J]. Inflamm Bowel Dis, 2012, 18(5): 913-924. DOI: 10.1002/ibd.21899.
|
[39] |
JEONG MY, JANG HM, KIM DH. High-fat diet causes psychiatric disorders in mice by increasing Proteobacteria population[J]. Neurosci Lett, 2019, 698: 51-57. DOI: 10.1016/j.neulet.2019.01.006.
|
[40] |
PALLOTTO MR, DE GODOY M, HOLSCHER HD, et al. Effects of weight loss with a moderate-protein, high-fiber diet on body composition, voluntary physical activity, and fecal microbiota of obese cats[J]. Am J Vet Res, 2018, 79(2): 181-190. DOI: 10.2460/ajvr.79.2.181.
|
[41] |
TAKAHASHI S, ANZAWA D, TAKAMI K, et al. Effect of Bifidobacterium animalis ssp. lactis GCL2505 on visceral fat accumulation in healthy Japanese adults: A randomized controlled trial[J]. Biosci Microbiota Food Health, 2016, 35(4): 163-171. DOI: 10.12938/bmfh.2016-002.
|
[42] |
ZINÖCKER MK, LINDSETH IA. The Western diet-microbiome-host interaction and its role in metabolic disease[J]. Nutrients, 2018, 10(3): 365. DOI: 10.3390/nu10030365.
|
[43] |
ZIMMER J, LANGE B, FRICK JS, et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota[J]. Eur J Clin Nutr, 2012, 66(1): 53-60. DOI: 10.1038/ejcn.2011.141.
|
[44] |
WILLING BP, DICKSVED J, HALFVARSON J, et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes[J]. Gastroenterology, 2010, 139(6): 1844-1854.e1. DOI: 10.1053/j.gastro.2010.08.049.
|
[45] |
GOMEZ-ARANGO LF, BARRETT HL, MCINTYRE HD, et al. Connections between the gut microbiome and metabolic hormones in early pregnancy in overweight and obese women[J]. Diabetes, 2016, 65(8): 2214-2223. DOI: 10.2337/db16-0278.
|
[46] |
LAHTI L, SALONEN A, KEKKONEN RA, et al. Associations between the human intestinal microbiota, Lactobacillus rhamnosus GG and serum lipids indicated by integrated analysis of high-throughput profiling data[J]. PeerJ, 2013, 1: e32. DOI: 10.7717/peerj.32.
|
[47] |
FROST F, STORCK LJ, KACPROWSKI T, et al. A structured weight loss program increases gut microbiota phylogenetic diversity and reduces levels of Collinsella in obese type 2 diabetics: A pilot study[J]. PLoS One, 2019, 14(7): e0219489. DOI: 10.1371/journal.pone.0219489.
|
[48] |
OHASHI Y, FUJISAWA T. Analysis of Clostridium cluster XI bacteria in human feces[J]. Biosci Microbiota Food Health, 2019, 38(2): 65-68. DOI: 10.12938/bmfh.18-023.
|
[49] |
YAMAGUCHI Y, ADACHI K, SUGIYAMA T, et al. Association of intestinal microbiota with metabolic markers and dietary habits in patients with type 2 diabetes[J]. Digestion, 2016, 94(2): 66-72. DOI: 10.1159/000447690.
|
[50] |
HOLSCHER HD, GUETTERMAN HM, SWANSON KS, et al. Walnut consumption alters the gastrointestinal microbiota, microbially derived secondary bile acids, and health markers in healthy adults: A randomized controlled trial[J]. J Nutr, 2018, 148(6): 861-867. DOI: 10.1093/jn/nxy004.
|