| [1] |
HAHN ME, KARCHNER SI, MERSON RR. Diversity as opportunity: Insights from 600 million years of AHR evolution[J]. Curr Opin Toxicol, 2017, 2: 58- 71. DOI: 10.1016/j.cotox.2017.02.003.
|
| [2] |
STOCKINGER B, SHAH K, WINCENT E. AHR in the intestinal microenvironment: Safeguarding barrier function[J]. Nat Rev Gastroenterol Hepatol, 2021, 18( 8): 559- 570. DOI: 10.1038/s41575-021-00430-8.
|
| [3] |
DAI SY, QU LZ, LI J, et al. Structural insight into the ligand binding mechanism of aryl hydrocarbon receptor[J]. Nat Commun, 2022, 13( 1): 6234. DOI: 10.1038/s41467-022-33858-w.
|
| [4] |
OBER EA, LEMAIGRE FP. Development of the liver: Insights into organ and tissue morphogenesis[J]. J Hepatol, 2018, 68( 5): 1049- 1062. DOI: 10.1016/j.jhep.2018.01.005.
|
| [5] |
WALISSER JA, GLOVER E, PANDE K, et al. Aryl hydrocarbon receptor-dependent liver development and hepatotoxicity are mediated by different cell types[J]. Proc Natl Acad Sci USA, 2005, 102( 49): 17858- 17863. DOI: 10.1073/pnas.0504757102.
|
| [6] |
ZHAO Y, BAO RK, ZHU SY, et al. Lycopene prevents DEHP-induced hepatic oxidative stress damage by crosstalk between AHR-Nrf2 pathway[J]. Environ Pollut, 2021, 285: 117080. DOI: 10.1016/j.envpol.2021.117080.
|
| [7] |
PROCHÁZKOVÁ J, KABÁTKOVÁ M, BRYJA V, et al. The interplay of the aryl hydrocarbon receptor and β-catenin alters both AhR-dependent transcription and Wnt/β-catenin signaling in liver progenitors[J]. Toxicol Sci, 2011, 122( 2): 349- 360. DOI: 10.1093/toxsci/kfr129.
|
| [8] |
REJANO-GORDILLO CM, GONZÁLEZ-RICO FJ, MARÍN-DÍAZ B, et al. Liver regeneration after partial hepatectomy is improved in the absence of aryl hydrocarbon receptor[J]. Sci Rep, 2022, 12( 1): 15446. DOI: 10.1038/s41598-022-19733-0.
|
| [9] |
ISRAELSEN M, FRANCQUE S, TSOCHATZIS EA, et al. Steatotic liver disease[J]. Lancet, 2024, 404( 10464): 1761- 1778. DOI: 10.1016/S0140-6736(24)01811-7.
|
| [10] |
KIM YC, SEOK S, BYUN S, et al. AhR and SHP regulate phosphatidylcholine and S-adenosylmethionine levels in the one-carbon cycle[J]. Nat Commun, 2018, 9( 1): 540. DOI: 10.1038/s41467-018-03060-y.
|
| [11] |
SHIN S, WAKABAYASHI N, MISRA V, et al. NRF2 modulates aryl hydrocarbon receptor signaling: Influence on adipogenesis[J]. Mol Cell Biol, 2007, 27( 20): 7188- 7197. DOI: 10.1128/MCB.00915-07.
|
| [12] |
MOYER BJ, ROJAS IY, KERLEY-HAMILTON JS, et al. Obesity and fatty liver are prevented by inhibition of the aryl hydrocarbon receptor in both female and male mice[J]. Nutr Res, 2017, 44: 38- 50. DOI: 10.1016/j.nutres.2017.06.002.
|
| [13] |
KANMANI P, VILLENA J, LIM SK, et al. Immunobiotic bacteria attenuate hepatic fibrosis through the modulation of gut microbiota and the activation of aryl-hydrocarbon receptors pathway in non-alcoholic steatohepatitis mice[J]. Mol Nutr Food Res, 2024, 68( 14): e2400227. DOI: 10.1002/mnfr.202400227.
|
| [14] |
DONG HB, HAO LY, ZHANG WL, et al. Activation of AhR-NQO1 signaling pathway protects against alcohol-induced liver injury by improving redox balance[J]. Cell Mol Gastroenterol Hepatol, 2021, 12( 3): 793- 811. DOI: 10.1016/j.jcmgh.2021.05.013.
|
| [15] |
WRZOSEK L, CIOCAN D, HUGOT C, et al. Microbiota tryptophan metabolism induces aryl hydrocarbon receptor activation and improves alcohol-induced liver injury[J]. Gut, 2021, 70( 7): 1299- 1308. DOI: 10.1136/gutjnl-2020-321565.
|
| [16] |
ODENWALD MA, PAUL S. Viral hepatitis: Past, present, and future[J]. World J Gastroenterol, 2022, 28( 14): 1405- 1429. DOI: 10.3748/wjg.v28.i14.1405.
|
| [17] |
ZHANG RY, LIU HE, LIN J, et al. AhR may be involved in Th17 cell differentiation in chronic hepatitis B[J]. J Viral Hepat, 2023, 30( 12): 939- 950. DOI: 10.1111/jvh.13883.
|
| [18] |
FURUTANI Y, HIRANO Y, TOGUCHI M, et al. A small molecule iCDM-34 identified by in silico screening suppresses HBV DNA through activation of aryl hydrocarbon receptor[J]. Cell Death Discov, 2023, 9( 1): 467. DOI: 10.1038/s41420-023-01755-w.
|
| [19] |
OHASHI H, NISHIOKA K, NAKAJIMA S, et al. The aryl hydrocarbon receptor-cytochrome P450 1A1 pathway controls lipid accumulation and enhances the permissiveness for hepatitis C virus assembly[J]. J Biol Chem, 2018, 293( 51): 19559- 19571. DOI: 10.1074/jbc.RA118.005033.
|
| [20] |
NAKAMURA K, YAMASAKI M, OHASHI H, et al. Identification of methylsulochrin as a partial agonist for aryl hydrocarbon receptors and its antiviral and anti-inflammatory activities[J]. Chem Pharm Bull(Tokyo), 2023, 71( 8): 650- 654. DOI: 10.1248/cpb.c23-00243.
|
| [21] |
BJÖRNSSON HK, BJÖRNSSON ES. Drug-induced liver injury: Pathogenesis, epidemiology, clinical features, and practical management[J]. Eur J Intern Med, 2022, 97: 26- 31. DOI: 10.1016/j.ejim.2021.10.035.
|
| [22] |
PAPAGEORGIOU I, FREYTSIS M, COURT MH. Transcriptome association analysis identifies miR-375 as a major determinant of variable acetaminophen glucuronidation by human liver[J]. Biochem Pharmacol, 2016, 117: 78- 87. DOI: 10.1016/j.bcp.2016.08.014.
|
| [23] |
SCHURAN FA, LOMMETZ C, STEUDTER A, et al. Aryl hydrocarbon receptor activity in hepatocytes sensitizes to hyperacute acetaminophen-induced hepatotoxicity in mice[J]. Cell Mol Gastroenterol Hepatol, 2021, 11( 2): 371- 388. DOI: 10.1016/j.jcmgh.2020.09.002.
|
| [24] |
WANG MX, ZHANG ZQ, RUAN PP, et al. Emodin-induced hepatotoxicity is enhanced by 3-methylcholanthrene through activating aryl hydrocarbon receptor and inducing CYP1A1 in vitro and in vivo[J]. Chem Biol Interact, 2022, 365: 110089. DOI: 10.1016/j.cbi.2022.110089.
|
| [25] |
ZHANG Y, LE Y, JI Y, et al. Activation of activator protein-1-fibroblast growth factor 21 signaling attenuates Cisplatin hepatotoxicity[J]. Biochem Pharmacol, 2021, 194: 114823. DOI: 10.1016/j.bcp.2021.114823.
|
| [26] |
MURATORI L, LOHSE AW, LENZI M. Diagnosis and management of autoimmune hepatitis[J]. BMJ, 2023, 380: e070201. DOI: 10.1136/bmj-2022-070201.
|
| [27] |
VUERICH M, HARSHE R, FRANK LA, et al. Altered aryl-hydrocarbon-receptor signalling affects regulatory and effector cell immunity in autoimmune hepatitis[J]. J Hepatol, 2021, 74( 1): 48- 57. DOI: 10.1016/j.jhep.2020.06.044.
|
| [28] |
CANNON AS, HOLLOMAN BL, WILSON K, et al. 6-Formylindolo[3, 2-b] carbazole, a potent ligand for the aryl hydrocarbon receptor, attenuates concanavalin-induced hepatitis by limiting T-cell activation and infiltration of proinflammatory CD11b+ Kupffer cells[J]. J Leukoc Biol, 2024, 115( 6): 1070- 1083. DOI: 10.1093/jleuko/qiae018.
|
| [29] |
PANDEY SP, BENDER MJ, MCPHERSON AC, et al. Tet2 deficiency drives liver microbiome dysbiosis triggering Tc1 cell autoimmune hepatitis[J]. Cell Host Microbe, 2022, 30( 7): 1003- 1019. DOI: 10.1016/j.chom.2022.05.006.
|
| [30] |
GINÈS P, KRAG A, ABRALDES JG, et al. Liver cirrhosis[J]. Lancet, 2021, 398( 10308): 1359- 1376. DOI: 10.1016/S0140-6736(21)01374-X.
|
| [31] |
YANG CG, WANG YN, HUA MR, et al. Aryl hydrocarbon receptor: From pathogenesis to therapeutic targets in aging-related tissue fibrosis[J]. Ageing Res Rev, 2022, 79: 101662. DOI: 10.1016/j.arr.2022.101662.
|
| [32] |
ANDREOLA F, CALVISI DF, ELIZONDO G, et al. Reversal of liver fibrosis in aryl hydrocarbon receptor null mice by dietary vitamin A depletion[J]. Hepatology, 2004, 39( 1): 157- 166. DOI: 10.1002/hep.20004.
|
| [33] |
WANG Y, DENG BC. Hepatocellular carcinoma: Molecular mechanism, targeted therapy, and biomarkers[J]. Cancer Metastasis Rev, 2023, 42( 3): 629- 652. DOI: 10.1007/s10555-023-10084-4.
|
| [34] |
ZHU Q, MA YR, LIANG JB, et al. AHR mediates the aflatoxin B1 toxicity associated with hepatocellular carcinoma[J]. Signal Transduct Target Ther, 2021, 6( 1): 299. DOI: 10.1038/s41392-021-00713-1.
|
| [35] |
CHEN CT, WU PH, HU CC, et al. Aberrant upregulation of indoleamine 2, 3-dioxygenase 1 promotes proliferation and metastasis of hepatocellular carcinoma cells via coordinated activation of AhR and β-catenin signaling[J]. Int J Mol Sci, 2021, 22( 21): 11661. DOI: 10.3390/ijms222111661.
|
| [36] |
MORENO-MARÍN N, BARRASA E, MORALES-HERNÁNDEZ A, et al. Dioxin receptor adjusts liver regeneration after acute toxic injury and protects against liver carcinogenesis[J]. Sci Rep, 2017, 7( 1): 10420. DOI: 10.1038/s41598-017-10984-w.
|
| [37] |
PAN PH, WANG YY, LIN SY, et al. Plumbagin ameliorates bile duct ligation-induced cholestatic liver injury in rats[J]. Biomed Pharmacother, 2022, 151: 113133. DOI: 10.1016/j.biopha.2022.113133.
|
| [38] |
LI TT, XU LJ, ZHENG RY, et al. Picroside II protects against cholestatic liver injury possibly through activation of farnesoid X receptor[J]. Phytomedicine, 2020, 68: 153153. DOI: 10.1016/j.phymed.2019.153153.
|
| [39] |
SHIN HS, LEE HJ, PYO MC, et al. Ochratoxin A-induced hepatotoxicity through phase I and phase II reactions regulated by AhR in liver cells[J]. Toxins(Basel), 2019, 11( 7): 377. DOI: 10.3390/toxins11070377.
|
| [40] |
DENISON MS, NAGY SR. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals[J]. Annu Rev Pharmacol Toxicol, 2003, 43: 309- 334. DOI: 10.1146/annurev.pharmtox.43.100901.135828.
|
| [41] |
LAMAS B, RICHARD ML, LEDUCQ V, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands[J]. Nat Med, 2016, 22( 6): 598- 605. DOI: 10.1038/nm.4102.
|
| [42] |
TSUJI G, YUMINE A, KAWAMURA K, et al. Induction of semaphorin 3A by resveratrol and pinostilbene via activation of the AHR-NRF2 axis in human keratinocytes[J]. Antioxidants(Basel), 2024, 13( 6): 732. DOI: 10.3390/antiox13060732.
|
| [43] |
BONATI L, CORRADA D, TAGLIABUE SG, et al. Molecular modeling of the AhR structure and interactions can shed light on ligand-dependent activation and transformation mechanisms[J]. Curr Opin Toxicol, 2017, 2: 42- 49. DOI: 10.1016/j.cotox.2017.01.011.
|
| [44] |
TRIKHA P, LEE DA. The role of AhR in transcriptional regulation of immune cell development and function[J]. Biochim Biophys Acta Rev Cancer, 2020, 1873( 1): 188335. DOI: 10.1016/j.bbcan.2019.188335.
|
| [45] |
HAN L, MA CH, WU ZT, et al. AhR-STAT3-HO-1/COX-2 signalling pathway may restrict ferroptosis and improve hMSC accumulation and efficacy in mouse liver[J]. Br J Pharmacol, 2024, 181( 1): 125- 141. DOI: 10.1111/bph.16208.
|
| [46] |
ZHAO TT, LI JF, ZHANG LT. Progress in the potential therapeutic mechanism of mesenchymal stem cell-derived exosomes for liver fibrosis[J]. Chin J Clin Pharmacol Ther, 2024, 29( 4): 475- 480. DOI: 10.12092/j.issn.1009-2501.2024.04.017.
赵婷婷, 李俊峰, 张立婷. 间充质干细胞源性外泌体对肝纤维化潜在治疗机制的研究进展[J]. 中国临床药理学与治疗学, 2024, 29( 4): 475- 480. DOI: 10.12092/j.issn.1009-2501.2024.04.017.
|