| [1] |
Professional Committee for Prevention and Treatment of Drug-Induced Liver Injury, China Association of Biotechnology; Drug-Induced Liver Disease Group, Branch Hepatology, Chinese Medical Association. Chinese guideline for diagnosis and management of drug-induced liver injury(2023 version)[J]. Chin J Gastroenterol, 2023, 28( 7): 397- 431.
中国医药生物技术协会药物性肝损伤防治技术专业委员会, 中华医学会肝病学分会药物性肝病学组. 中国药物性肝损伤诊治指南(2023年版)[J]. 胃肠病学, 2023, 28( 7): 397- 431.
|
| [2] |
GARCIA-CORTES M, ROBLES-DIAZ M, STEPHENS C, et al. Drug induced liver injury: An update[J]. Arch Toxicol, 2020, 94( 10): 3381- 3407. DOI: 10.1007/s00204-020-02885-1.
|
| [3] |
LI XY, TANG JT, MAO YM. Incidence and risk factors of drug-induced liver injury[J]. Liver Int, 2022, 42( 9): 1999- 2014. DOI: 10.1111/liv.15262.
|
| [4] |
WANG LY, JIANG MJ, GAO PJ. Association between human leukocyte antigen gene polymorphism and drug-induced liver injury[J]. J Clin Hepatol, 2021, 37( 2): 475- 479. DOI: 10.3969/j.issn.1001-5256.2021.02.048.
王露媛, 姜敏杰, 高普均. HLA基因多态性与药物性肝损伤的关系[J]. 临床肝胆病杂志, 2021, 37( 2): 475- 479. DOI: 10.3969/j.issn.1001-5256.2021.02.048.
|
| [5] |
NUDISCHER R, RENGGLI K, HIERLEMANN A, et al. Characterization of a long-term mouse primary liver 3D tissue model recapitulating innate-immune responses and drug-induced liver toxicity[J]. PLoS One, 2020, 15( 7): e0235745. DOI: 10.1371/journal.pone.0235745.
|
| [6] |
XU JC, PAN DG, LIAO W, et al. Application of 3D hepatic plate-like liver model for statin-induced hepatotoxicity evaluation[J]. Front Bioeng Biotechnol, 2022, 10: 826093. DOI: 10.3389/fbioe.2022.826093.
|
| [7] |
ZHOU YT, SHEN JX, LAUSCHKE VM. Comprehensive evaluation of organotypic and microphysiological liver models for prediction of drug-induced liver injury[J]. Front Pharmacol, 2019, 10: 1093. DOI: 10.3389/fphar.2019.01093.
|
| [8] |
MIRAHMAD M, SABOURIAN R, MAHDAVI M, et al. In vitro cell-based models of drug-induced hepatotoxicity screening: Progress and limitation[J]. Drug Metab Rev, 2022, 54( 2): 161- 193. DOI: 10.1080/036025-32.2022.2064487.
|
| [9] |
KOSTADINOVA R, BOESS F, APPLEGATE D, et al. A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity[J]. Toxicol Appl Pharmacol, 2013, 268( 1): 1- 16. DOI: 10.1016/j.taap.2013.01.012.
|
| [10] |
ALLISON R, GURAKA A, SHAWA IT, et al. Drug induced liver injury-a 2023 update[J]. J Toxicol Environ Health B Crit Rev, 2023, 26( 8): 442- 467. DOI: 10.1080/10937404.2023.2261848.
|
| [11] |
BJÖRNSSON HK, BJÖRNSSON ES. Drug-induced liver injury: Pathogenesis, epidemiology, clinical features, and practical management[J]. Eur J Intern Med, 2022, 97: 26- 31. DOI: 10.1016/j.ejim.2021.10.035.
|
| [12] |
Chinese Medical Association, Chinese Medical Association Press, Drug-Induced Liver Disease Group, Hepatology Branch of Chinese Medical Association, et al. Chinese guideline for diagnosis and management of drug-induced liver injury in primary care(2024)[J]. Chin J Gen Pract, 2024, 23( 8): 813- 830. DOI: 10.3760/cma.j.cn114798-20240408-00225.
中华医学会, 中华医学会杂志社, 中华医学会肝病分会药物性肝病学组, 等. 中国药物性肝损伤基层诊疗与管理指南(2024年)[J]. 中华全科医师杂志, 2024, 23( 8): 813- 830. DOI: 10.3760/cma.j.cn114798-20240408-00225.
|
| [13] |
WANG Y, LI S, LIU CH. Immunological mechanism of drug-induced liver injury[J]. J Clin Hepatol, 2024, 40( 12): 2538- 2542. DOI: 10.12449/JCH-241227.
王宇, 李爽, 刘成海. 药物性肝损伤的免疫学机制[J]. 临床肝胆病杂志, 2024, 40( 12): 2538- 2542. DOI: 10.12449/JCH241227.
|
| [14] |
CHIPANGURA JK, NTAMO Y, MOHR B, et al. A review of challenges and prospects of 3D cell-based culture models used for studying drug induced liver injury during early phases of drug development[J]. Hum Exp Toxicol, 2023, 42: 9603271221147884. DOI: 10.1177/09603271221-147884.
|
| [15] |
JENSEN C, TENG Y. Is it time to start transitioning from 2D to 3D cell culture?[J]. Front Mol Biosci, 2020, 7: 33. DOI: 10.3389/fmolb.2020.00033.
|
| [16] |
SUAREZ-MARTINEZ E, SUAZO-SANCHEZ I, CELIS-ROMERO M, et al. 3D and organoid culture in research: Physiology, hereditary genetic diseases and cancer[J]. Cell Biosci, 2022, 12( 1): 39. DOI: 10.1186/s13578-022-00775-w.
|
| [17] |
KAMMERER S. Three-dimensional liver culture systems to maintain primary hepatic properties for toxicological analysis in vitro[J]. Int J Mol Sci, 2021, 22( 19): 10214. DOI: 10.3390/ijms221910214.
|
| [18] |
PANWAR A, DAS P, TAN LP. 3D hepatic organoid-based advancements in LIVER tissue engineering[J]. Bioengineering(Basel), 2021, 8( 11): 185. DOI: 10.3390/bioengineering8110185.
|
| [19] |
DENG J, WEI WB, CHEN ZZ, et al. Engineered liver-on-a-chip platform to mimic liver functions and its biomedical applications: A review[J]. Micromachines(Basel), 2019, 10( 10): 676. DOI: 10.3390/mi10100676.
|
| [20] |
MESSINA A, LUCE E, HUSSEIN M, et al. Pluripotent-stem-cell-derived hepatic cells: Hepatocytes and organoids for liver therapy and regeneration[J]. Cells, 2020, 9( 2): 420. DOI: 10.3390/cells9020420.
|
| [21] |
JÄRVINEN E, HAMMER HS, PÖTZ O, et al. 3D spheroid primary human hepatocytes for prediction of cytochrome P450 and drug transporter induction[J]. Clin Pharmacol Ther, 2023, 113( 6): 1284- 1294. DOI: 10.1002/cpt.2887.
|
| [22] |
MA YP, HU L, TANG JH, et al. Three-dimensional cell co-culture liver models and their applications in pharmaceutical research[J]. Int J Mol Sci, 2023, 24( 7): 6248. DOI: 10.3390/ijms24076248.
|
| [23] |
WANG J, SUN MY, LIU W, et al. Stem cell-based therapies for liver diseases: An overview and update[J]. Tissue Eng Regen Med, 2019, 16( 2): 107- 118. DOI: 10.1007/s13770-019-00178-y.
|
| [24] |
DONATO MT, TOLOSA L. Stem-cell derived hepatocyte-like cells for the assessment of drug-induced liver injury[J]. Differentiation, 2019, 106: 15- 22. DOI: 10.1016/j.diff.2019.02.004.
|
| [25] |
GUO KD, van den BEUCKEN T. Advances in drug-induced liver injury research: in vitro models, mechanisms, omics and gene modulation techniques[J]. Cell Biosci, 2024, 14( 1): 134. DOI: 10.1186/s13578-024-01317-2.
|
| [26] |
ZHUANG XM, SHEN GL, XIAO WB, et al. Assessment of the roles of P-glycoprotein and cytochrome P450 in triptolide-induced liver toxicity in sandwich-cultured rat hepatocyte model[J]. Drug Metab Dispos, 2013, 41( 12): 2158- 2165. DOI: 10.1124/dmd.113.054056.
|
| [27] |
JACKSON JP, FREEMAN KM, FRILEY WW, et al. Prediction of clinically relevant herb-drug clearance interactions using sandwich-cultured human hepatocytes: Schisandra spp. case study[J]. Drug Metab Dispos, 2017, 45( 9): 1019- 1026. DOI: 10.1124/dmd.117.075408.
|
| [28] |
Di ZEO-SÁNCHEZ DE, SEGOVIA-ZAFRA A, MATILLA-CABELLO G, et al. Modeling drug-induced liver injury: Current status and future prospects[J]. Expert Opin Drug Metab Toxicol, 2022, 18( 9): 555- 573. DOI: 10.1080/17425255.2022.2122810.
|
| [29] |
ASHRAF MN, ASGHAR MW, RONG Y, et al. Advanced in vitro HepaRG culture systems for xenobiotic metabolism and toxicity characterization[J]. Eur J Drug Metab Pharmacokinet, 2019, 44( 4): 437- 458. DOI: 10.1007/s13318-018-0533-3.
|
| [30] |
CHOI JM, OH SJ, LEE JY, et al. Prediction of drug-induced liver injury in HepG2 cells cultured with human liver microsomes[J]. Chem Res Toxicol, 2015, 28( 5): 872- 885. DOI: 10.1021/tx500504n.
|
| [31] |
XU JY, ODA S, YOKOI T. Cell-based assay using glutathione-depleted HepaRG and HepG2 human liver cells for predicting drug-induced liver injury[J]. Toxicol In Vitro, 2018, 48: 286- 301. DOI: 10.1016/j.tiv.2018.01.019.
|
| [32] |
BROOKS A, LIANG XW, ZHANG YL, et al. Liver organoid as a 3D in vitro model for drug validation and toxicity assessment[J]. Pharmacol Res, 2021, 169: 105608. DOI: 10.1016/j.phrs.2021.105608.
|
| [33] |
SZKOLNICKA D, FARNWORTH SL, LUCENDO-VILLARIN B, et al. Deriving functional hepatocytes from pluripotent stem cells[J]. Curr Protoc Stem Cell Biol, 2014, 30: 1G.5.1- 1 G.5.12. DOI: 10.1002/9780470151-808.sc01g05s30.
|
| [34] |
HO TC, CHANG CC, CHAN HP, et al. Hydrogels: Properties and applications in biomedicine[J]. Molecules, 2022, 27( 9): 2902. DOI: 10.3390/molecules27092902.
|
| [35] |
LI GX, ZHAO XL, LI CX, et al. Research progress in 3D culture methods for dental mesenchymal stem cells and their applications in regeneration and disease treatment[J]. J Jilin Univ(Med Edit), 2024, 50( 2): 564- 571. DOI: 10.13481/j.1671-587X.20240233.
李国鑫, 赵小琳, 李晨曦, 等. DMSCs三维培养方法及其在组织再生和疾病治疗中应用的研究进展[J]. 吉林大学学报(医学版), 2024, 50( 2): 564- 571. DOI: 10.13481/j.1671-587X.20240233.
|
| [36] |
HE T, QIAO SD, MA C, et al. FEK self-assembled peptide hydrogels facilitate primary hepatocytes culture and pharmacokinetics screening[J]. J Biomed Mater Res B Appl Biomater, 2022, 110( 9): 2015- 2027. DOI: 10.1002/jbm.b.35056.
|
| [37] |
GORI M, GIANNITELLI SM, TORRE M, et al. Biofabrication of hepatic constructs by 3D bioprinting of a cell-laden thermogel: An effective tool to assess drug-induced hepatotoxic response[J]. Adv Healthc Mater, 2020, 9( 21): e2001163. DOI: 10.1002/adhm.202001163.
|
| [38] |
CHO CY, CHIANG TH, HSIEH LH, et al. Development of a novel hanging drop platform for engineering controllable 3D microenvironments[J]. Front Cell Dev Biol, 2020, 8: 327. DOI: 10.3389/fcell.2020.00327.
|
| [39] |
FILIPPI M, BUCHNER T, YASA O, et al. Microfluidic tissue engineering and bio-actuation[J]. Adv Mater, 2022, 34( 23): e2108427. DOI: 10.1002/adma.202108427.
|
| [40] |
LI QS, TONG ZD, MAO HJ. Microfluidic based organ-on-chips and biomedical application[J]. Biosensors(Basel), 2023, 13( 4): 436. DOI: 10.3390/bios13040436.
|
| [41] |
FU JJ, LYU XH, WANG LX, et al. Cutting and bonding parafilm® to fast prototyping flexible hanging drop chips for 3D spheroid cultures[J]. Cell Mol Bioeng, 2020, 14( 2): 187- 199. DOI: 10.1007/s12195-020-00660-x.
|
| [42] |
HUANG SW, TZENG SC, CHEN JK, et al. A dynamic hanging-drop system for mesenchymal stem cell culture[J]. Int J Mol Sci, 2020, 21( 12): 4298. DOI: 10.3390/ijms21124298.
|
| [43] |
PANEK M, GRABACKA M, PIERZCHALSKA M. The formation of intestinal organoids in a hanging drop culture[J]. Cytotechnology, 2018, 70( 3): 1085- 1095. DOI: 10.1007/s10616-018-0194-8.
|
| [44] |
PARK J, KIM H, PARK JK. Microfluidic channel-integrated hanging drop array chip operated by pushbuttons for spheroid culture and analysis[J]. Analyst, 2020, 145( 21): 6974- 6980. DOI: 10.1039/d0an01091j.
|
| [45] |
MUELLER D, KRÄMER L, HOFFMANN E, et al. 3D organotypic HepaRG cultures as in vitro model for acute and repeated dose toxicity studies[J]. Toxicol In Vitro, 2014, 28( 1): 104- 112. DOI: 10.1016/j.tiv.2013.06.024.
|
| [46] |
CARDOSO BD, CASTANHEIRA EMS, LANCEROS-MÉNDEZ S, et al. Recent advances on cell culture platforms for in vitro drug screening and cell therapies: From conventional to microfluidic strategies[J]. Adv Healthc Mater, 2023, 12( 18): e2202936. DOI: 10.1002/adhm.202202936.
|
| [47] |
LEGENDRE A, JACQUES S, DUMONT F, et al. Investigation of the hepatotoxicity of flutamide: Pro-survival/apoptotic and necrotic switch in primary rat hepatocytes characterized by metabolic and transcriptomic profiles in microfluidic liver biochips[J]. Toxicol In Vitro, 2014, 28( 5): 1075- 1087. DOI: 10.1016/j.tiv.2014.04.008.
|
| [48] |
LAUSCHKE VM, HENDRIKS DFG, BELL CC, et al. Novel 3D culture systems for studies of human liver function and assessments of the hepatotoxicity of drugs and drug candidates[J]. Chem Res Toxicol, 2016, 29( 12): 1936- 1955. DOI: 10.1021/acs.chemrestox.6b00150.
|
| [49] |
SUN GC, LI HY, CHEN J, et al. Research progress and application of organoids in biomedicine[J]. Clin J Med Offic, 2023, 51( 11): 1206- 1210. DOI: 10.16680/j.1671-3826.2023.11.28.
孙广晨, 李宏宇, 陈江, 等. 类器官在生物医学中研究进展及应用[J]. 临床军医杂志, 2023, 51( 11): 1206- 1210. DOI: 10.16680/j.1671-3826.2023.11.28.
|
| [50] |
NUCIFORO S, HEIM MH. Organoids to model liver disease[J]. JHEP Rep, 2020, 3( 1): 100198. DOI: 10.1016/j.jhepr.2020.100198.
|
| [51] |
HOU CL, SHA WQ, XU ZZ, et al. Culture and establishment of self-renewing human liver 3D organoids with high uric acid for screening antihyperuricemic functional compounds[J]. Food Chem, 2022, 374: 131634. DOI: 10.1016/j.foodchem.2021.131634.
|
| [52] |
SATO K, ZHANG WJ, SAFARIKIA S, et al. Organoids and spheroids as models for studying cholestatic liver injury and cholangiocarcinoma[J]. Hepatology, 2021, 74( 1): 491- 502. DOI: 10.1002/hep.31653.
|
| [53] |
CHOI SY, KIM TH, KIM MJ, et al. Validating well-functioning hepatic organoids for toxicity evaluation[J]. Toxics, 2024, 12( 5): 371. DOI: 10.3390/toxics12050371.
|
| [54] |
WU XS, JIANG DC, YANG Y, et al. Modeling drug-induced liver injury and screening for anti-hepatofibrotic compounds using human PSC-derived organoids[J]. Cell Regen, 2023, 12( 1): 6. DOI: 10.1186/s13619-022-00148-1.
|
| [55] |
JIN B, LIU YT, DU SD, et al. Current trends and research topics regarding liver 3D bioprinting: A bibliometric analysis research[J]. Front Cell Dev Biol, 2022, 10: 1047524. DOI: 10.3389/fcell.2022.1047524.
|
| [56] |
LI CC, JIANG ZR, YANG HY. Advances in 3D bioprinting technology for liver regeneration[J]. Hepatobiliary Surg Nutr, 2022, 11( 6): 917- 919. DOI: 10.21037/hbsn-22-531.
|
| [57] |
GUAGLIANO G, VOLPINI C, BRIATICO-VANGOSA F, et al. Toward 3D-bioprinted models of the liver to boost drug development[J]. Macromol Biosci, 2022, 22( 12): e2200264. DOI: 10.1002/mabi.202200264.
|
| [58] |
KNOWLTON S, TASOGLU S. A bioprinted liver-on-a-chip for drug screening applications[J]. Trends Biotechnol, 2016, 34( 9): 681- 682. DOI: 10.1016/j.tibtech.2016.05.014.
|
| [59] |
NGUYEN DG, FUNK J, ROBBINS JB, et al. Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro[J]. PLoS One, 2016, 11( 7): e0158674. DOI: 10.1371/journal.pone.0158674.
|
| [60] |
HELENA MACEDO M, BAIÃO A, PINTO S, et al. Mucus-producing 3D cell culture models[J]. Adv Drug Deliv Rev, 2021, 178: 113993. DOI: 10.1016/j.addr.2021.113993.
|
| [61] |
WANG HB, BROWN PC, CHOW ECY, et al. 3D cell culture models: Drug pharmacokinetics, safety assessment, and regulatory consideration[J]. Clin Transl Sci, 2021, 14( 5): 1659- 1680. DOI: 10.1111/cts.13066.
|
| [62] |
COX CR, LYNCH S, GOLDRING C, et al. Current perspective: 3D spheroid models utilizing human-based cells for investigating metabolism-dependent drug-induced liver injury[J]. Front Med Technol, 2020, 2: 611913. DOI: 10.3389/fmedt.2020.611913.
|
| [63] |
DUVAL K, GROVER H, HAN LH, et al. Modeling physiological events in 2D vs. 3D cell culture[J]. Physiology(Bethesda), 2017, 32( 4): 266- 277. DOI: 10.1152/physiol.00036.2016.
|
| [64] |
De LEÓN SE, PUPOVAC A, MCARTHUR SL. Three-Dimensional(3D) cell culture monitoring: Opportunities and challenges for impedance spectroscopy[J]. Biotechnol Bioeng, 2020, 117( 4): 1230- 1240. DOI: 10.1002/bit.27270.
|
| [65] |
LANGHANS SA. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning[J]. Front Pharmacol, 2018, 9: 6. DOI: 10.3389/fphar.2018.00006.
|
| [66] |
BOOIJ TH, PRICE LS, DANEN EHJ. 3D cell-based assays for drug screens: Challenges in imaging, image analysis, and high-content analysis[J]. SLAS Discov, 2019, 24( 6): 615- 627. DOI: 10.1177/2472555219-830087.
|