| [1] |
SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71( 3): 209- 249. DOI: 10.3322/caac.21660.
|
| [2] |
RUMGAY H, FERLAY J, de MARTEL C, et al. Global, regional and national burden of primary liver cancer by subtype[J]. Eur J Cancer, 2022, 161: 108- 118. DOI: 10.1016/j.ejca.2021.11.023.
|
| [3] |
TOH MR, WONG EYT, WONG SH, et al. Global epidemiology and genetics of hepatocellular carcinoma[J]. Gastroenterology, 2023, 164( 5): 766- 782. DOI: 10.1053/j.gastro.2023.01.033.
|
| [4] |
XU HC, WANG FL, XIE LH. Current status and perspectives in clinical treatment of intermediate and advanced primary hepatocellular carcinoma[J]. J Changchun Univ Chin Med, 2024, 40( 1): 103- 107. DOI: 10.13463/j.cnki.cczyy.2024.01.024.
许华晨, 王凤玲, 谢林虎. 中晚期原发性肝细胞癌的临床治疗现状与展望[J]. 长春中医药大学学报, 2024, 40( 1): 103- 107. DOI: 10.13463/j.cnki.cczyy.2024.01.024.
|
| [5] |
HU B, ZHONG LP, WENG YH, et al. Therapeutic siRNA: State of the art[J]. Signal Transduct Target Ther, 2020, 5( 1): 101. DOI: 10.1038/s41392-020-0207-x.
|
| [6] |
SETTEN RL, ROSSI JJ, HAN SP. The current state and future directions of RNAi-based therapeutics[J]. Nat Rev Drug Discov, 2019, 18( 6): 421- 446. DOI: 10.1038/s41573-019-0017-4.
|
| [7] |
ZOHEIR KMA, ABD-RABOU AA, DARWISH AM, et al. Inhibition of induced-hepatic cancer in vivo through IQGAP1-shRNA gene therapy and modulation of TRAIL-induced apoptosis pathway[J]. Front Oncol, 2022, 12: 998247. DOI: 10.3389/fonc.2022.998247.
|
| [8] |
KIM W, YE Z, SIMONENKO V, et al. Codelivery of TGFβ and Cox2 siRNA inhibits HCC by promoting T-cell penetration into the tumor and improves response to Immune Checkpoint Inhibitors[J]. NAR Cancer, 2024, 6( 1): zcad059. DOI: 10.1093/narcan/zcad059.
|
| [9] |
LIU XX, ZHU L, MA JJ, et al. Target-specific delivery of siRNA into hepatoma cells’ cytoplasm by bifunctional carrier peptide[J]. Drug Deliv Transl Res, 2017, 7( 1): 147- 155. DOI: 10.1007/s13346-016-0348-1.
|
| [10] |
YOUNIS MA, KHALIL IA, HARASHIMA H. Gene therapy for hepatocellular carcinoma: Highlighting the journey from theory to clinical applications[J]. Adv Ther, 2020, 3( 11): 2000087. DOI: 10.1002/adtp.202000087.
|
| [11] |
ABDELLATIF AAH, YOUNIS MA, ALSOWINEA AF, et al. Lipid nanoparticles technology in vaccines: Shaping the future of prophylactic medicine[J]. Colloids Surf B Biointerfaces, 2023, 222: 113111. DOI: 10.1016/j.colsurfb.2022.113111.
|
| [12] |
LIU CH, CHERN GJ, HSU FF, et al. A multifunctional nanocarrier for efficient TRAIL-based gene therapy against hepatocellular carcinoma with desmoplasia in mice[J]. Hepatology, 2018, 67( 3): 899- 913. DOI: 10.1002/hep.29513.
|
| [13] |
DENG ZY, YANG H, TIAN YY, et al. An OX40L mRNA vaccine inhibits the growth of hepatocellular carcinoma[J]. Front Oncol, 2022, 12: 975408. DOI: 10.3389/fonc.2022.975408.
|
| [14] |
HERNÁNDEZ-ALCOCEBA R, SANGRO B, PRIETO J. Gene therapy of liver cancer[J]. Ann Hepatol, 2007, 6( 1): 5- 14. DOI: 10.1016/S1665-2681(19)31948-9.
|
| [15] |
The Nobel Prize in Chemistry 2020[EB/OL].[ 2025-01-19]. https://www.nobelprize.org/prizes/chemistry/2020/press-release/. https: //www.nobelprize.org/prizes/chemistry/2020/press-release/
|
| [16] |
WANG X, TANG Y, LU J, et al. Characterization of novel cytochrome P450 2E1 knockout rat model generated by CRISPR/Cas9[J]. Biochem Pharmacol, 2016, 105: 80- 90. DOI: 10.1016/j.bcp.2016.03.001.
|
| [17] |
NIU Y, LIN ZY, WAN A, et al. Loss-of-function genetic screening identifies aldolase a as an essential driver for liver cancer cell growth under hypoxia[J]. Hepatology, 2021, 74( 3): 1461- 1479. DOI: 10.1002/hep.31846.
|
| [18] |
WAN YF, GE K, ZHOU WJ, et al. C-X-C chemokine receptor 2(Cxcr2) promotes hepatocellular carcinoma immune evasion via regulating programmed death-ligand 1(PD-L1)[J]. Biol Chem, 2021, 402( 6): 729- 737. DOI: 10.1515/hsz-2020-0328.
|
| [19] |
ZHANG ZF, GENG CL, SONG MF, et al. Loss of SGK1 supports metastatic colonization in hepatocellular carcinoma by promoting resistance to T cell-mediated immunity[J]. J Hepatol, 2025: S0168- 8278( 25) 00064-9. DOI: 10.1016/j.jhep.2025.01.027.
|
| [20] |
SHI XY, ZHANG YY, WANG YC, et al. The tRNA Gm18 methyltransferase TARBP1 promotes hepatocellular carcinoma progression via metabolic reprogramming of glutamine[J]. Cell Death Differ, 2024, 31( 9): 1219- 1234. DOI: 10.1038/s41418-024-01323-4.
|
| [21] |
LI CJ, XIAO YX, ZHOU JL, et al. Knockout of onecut2 inhibits proliferation and promotes apoptosis of tumor cells through SKP2-mediated p53 acetylation in hepatocellular carcinoma[J]. Cell Mol Life Sci, 2024, 81( 1): 469. DOI: 10.1007/s00018-024-05518-3.
|
| [22] |
PALAZ F, OZSOZ M, ZARRINPAR A, et al. CRISPR in targeted therapy and adoptive T cell immunotherapy for hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2024, 11: 975- 995. DOI: 10.2147/JHC.S456683.
|
| [23] |
O’SHEA CC, JOHNSON L, BAGUS B, et al. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity[J]. Cancer Cell, 2004, 6( 6): 611- 623. DOI: 10.1016/j.ccr.2004.11.012.
|
| [24] |
MAKOWER D, ROZENBLIT A, KAUFMAN H, et al. Phase II clinical trial of intralesional administration of the oncolytic adenovirus ONYX-015 in patients with hepatobiliary tumors with correlative p53 studies[J]. Clin Cancer Res, 2003, 9( 2): 693- 702.
|
| [25] |
TAKAHASHI M, SATO T, SAGAWA T, et al. E1B-55K-deleted adenovirus expressing E1A-13S by AFP-enhancer/promoter is capable of highly specific replication in AFP-producing hepatocellular carcinoma and eradication of established tumor[J]. Mol Ther, 2002, 5( 5 Pt 1): 627- 634. DOI: 10.1006/mthe.2002.0589.
|
| [26] |
HAN SR, LEE CH, IM JY, et al. Targeted suicide gene therapy for liver cancer based on ribozyme-mediated RNA replacement through post-transcriptional regulation[J]. Mol Ther Nucleic Acids, 2020, 23: 154- 168. DOI: 10.1016/j.omtn.2020.10.036.
|
| [27] |
YI L, NING Z, XU L, et al. The combination treatment of oncolytic adenovirus H101 with nivolumab for refractory advanced hepatocellular carcinoma: An open-label, single-arm, pilot study[J]. ESMO Open, 2024, 9( 2): 102239. DOI: 10.1016/j.esmoop.2024.102239.
|
| [28] |
YARCHOAN M, GANE EJ, MARRON TU, et al. Personalized neoantigen vaccine and pembrolizumab in advanced hepatocellular carcinoma: A phase 1/2 trial[J]. Nat Med, 2024, 30( 4): 1044- 1053. DOI: 10.1038/s41591-024-02894-y.
|
| [29] |
YAO RH, XIE CY, XIA XJ. Recent progress in mRNA cancer vaccines[J]. Hum Vaccin Immunother, 2024, 20( 1): 2307187. DOI: 10.1080/21645515.2024.2307187.
|
| [30] |
WANG YH, ZHAO QF, ZHAO BY, et al. Remodeling tumor-associated neutrophils to enhance dendritic cell-based HCC neoantigen nano-vaccine efficiency[J]. Adv Sci(Weinh), 2022, 9( 11): e2105631. DOI: 10.1002/advs.202105631.
|
| [31] |
PENG S, CHEN SL, HU W, et al. Combination neoantigen-based dendritic cell vaccination and adoptive T-cell transfer induces antitumor responses against recurrence of hepatocellular carcinoma[J]. Cancer Immunol Res, 2022, 10( 6): 728- 744. DOI: 10.1158/2326-6066.CIR-21-0931.
|
| [32] |
ZHANG J, TANG DY, WANG CY, et al. Immunotherapy for hepatocellular carcinoma based on AFP antigen[J]. J East China Univ Sci Technol(Nat Sci Ed), 2025, 51( 2): 219- 227. DOI: 10.14135/j.cnki.1006-3080.20240601001.
张洁, 汤丁越, 王成烨, 等. 基于AFP靶点的肝细胞癌的免疫治疗研究[J]. 华东理工大学学报(自然科学版), 2025, 51( 2): 219- 227. DOI: 10.14135/j.cnki.1006-3080.20240601001.
|
| [33] |
ADU-BERCHIE K, BROCKMAN JM, LIU YT, et al. Adoptive T cell transfer and host antigen-presenting cell recruitment with cryogel scaffolds promotes long-term protection against solid tumors[J]. Nat Commun, 2023, 14( 1): 3546. DOI: 10.1038/s41467-023-39330-7.
|
| [34] |
SHI YP, SHI DH, CHI JC, et al. Combined local therapy and CAR-GPC3 T-cell therapy in advanced hepatocellular carcinoma: A proof-of-concept treatment strategy[J]. Cancer Commun(Lond), 2023, 43( 9): 1064- 1068. DOI: 10.1002/cac2.12472.
|
| [35] |
CAPPELL KM, KOCHENDERFER JN. Long-term outcomes following CAR T cell therapy: What we know so far[J]. Nat Rev Clin Oncol, 2023, 20( 6): 359- 371. DOI: 10.1038/s41571-023-00754-1.
|
| [36] |
DIMITRI A, HERBST F, FRAIETTA JA. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing[J]. Mol Cancer, 2022, 21( 1): 78. DOI: 10.1186/s12943-022-01559-z.
|
| [37] |
A phase I open label clinical trial evaluating the safety and antitumor activity of autologous T cells expressing enhanced TCRs spe⁃cific for alpha fetoprotein (AFPc332T) in HLA-A2 positive subjectswith advanced hepatocellular carcinoma (HCC) or other AFP ex⁃pressing tumor types[R/OL]. (2024-08-20) [2025-01-19]. https://clinicaltrials.gov/study/NCT03132792.
|
| [38] |
BAI HR, ZHU XY, GAO L, et al. ERG mediates the differentiation of hepatic progenitor cells towards immunosuppressive PDGFRα+ cancer-associated fibroblasts during hepatocarcinogenesis[J]. Cell Death Dis, 2025, 16( 1): 26. DOI: 10.1038/s41419-024-07270-9.
|
| [39] |
LI JL, HUANG LZ, HUANG XS, et al. Bioinformatics analysis on key genes related to prognosis,diagnosis,and immune cell infiltration of hepatocellular carcinoma and their potential therapeutic drugs[J]. J Jilin Univ(Med Edit), 2024, 50( 4): 1062- 1075. DOI: 10.13481/j.1671-587X.202404021.
黎金连, 黄岚珍, 黄希仕, 等. 肝细胞癌预后、诊断和免疫细胞浸润相关关键基因及其潜在治疗药物的生物信息学分析[J]. 吉林大学学报(医学版), 2024, 50( 4): 1062- 1075. DOI: 10.13481/j.1671-587X.202404021.
|
| [40] |
GUO HR, WANG ML, NI CY, et al. TREM2 promotes the formation of a tumor-supportive microenvironment in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2025, 44( 1): 20. DOI: 10.1186/s13046-025-03287-w.
|
| [41] |
LYU YH, LI Q, XIE SN, et al. Synergistic ultrasound-activable artificial enzyme and precision gene therapy to suppress redox homeostasis and malignant phenotypes for controllably combating hepatocellular carcinoma[J]. J Am Chem Soc, 2025, 147( 3): 2350- 2368. DOI: 10.1021/jacs.4c10997.
|
| [42] |
ZHANG BC, LAI CM, LUO BY, et al. Triterpenoids-templated self-assembly nanosystem for biomimetic delivery of CRISPR/Cas9 based on the synergy of TLR-2 and ICB to enhance HCC immunotherapy[J]. Acta Pharm Sin B, 2024, 14( 7): 3205- 3217. DOI: 10.1016/j.apsb.2024.04.033.
|
| [43] |
XIE PY, YU MC, ZHANG B, et al. CRKL dictates anti-PD-1 resistance by mediating tumor-associated neutrophil infiltration in hepatocellular carcinoma[J]. J Hepatol, 2024, 81( 1): 93- 107. DOI: 10.1016/j.jhep.2024.02.009.
|
| [44] |
FARINHA D, SARMENTO-RIBEIRO AB, FANECA H. Combination of gene therapy and chemotherapy in a new targeted hybrid nanosystem to hepatocellular carcinoma[J]. Int J Nanomedicine, 2024, 19: 12505- 12527. DOI: 10.2147/IJN.S474665.
|
| [45] |
RONG J, LIU TT, YIN XJ, et al. Co-delivery of camptothecin and miR-145 by lipid nanoparticles for MRI-visible targeted therapy of hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2024, 43( 1): 247. DOI: 10.1186/s13046-024-03167-9.
|
| [46] |
HADI M, QUTAIBA B ALLELA O, JABARI M, et al. Recent advances in various adeno-associated viruses(AAVs) as gene therapy agents in hepatocellular carcinoma[J]. Virol J, 2024, 21( 1): 17. DOI: 10.1186/s12985-024-02286-1.
|
| [47] |
DONG LQ, GAO Q. Multi-omics molecular subgrouping of hepatocellular carcinoma and its application in precision diagnosis and treatment[J] J Clin Hepatol, 2022, 38( 3): 510- 514. DOI: 10.3969/j.issn.1001-5256.2022.03.004.
董良庆, 高强. 肝细胞癌多组学分子分型及其在精准诊疗中的应用[J]. 临床肝胆病杂志, 2022, 38( 3): 510- 514. DOI: 10.3969/j.issn.1001-5256.2022.03.004.
|
| [48] |
KAZEMIAN P, YU SY, THOMSON SB, et al. Lipid-nanoparticle-based delivery of CRISPR/Cas9 genome-editing components[J]. Mol Pharm, 2022, 19( 6): 1669- 1686. DOI: 10.1021/acs.molpharmaceut.1c00916.
|
| [49] |
YU SJ, ZHAO RR, ZHANG BC, et al. Research progress and application of the CRISPR/Cas9 gene-editing technology based on hepatocellular carcinoma[J]. Asian J Pharm Sci, 2023, 18( 4): 100828. DOI: 10.1016/j.ajps.2023.100828.
|
| [50] |
LIN YQ, FENG KK, LU JY, et al. CRISPR/Cas9-based application for cancer therapy: Challenges and solutions for non-viral delivery[J]. J Control Release, 2023, 361: 727- 749. DOI: 10.1016/j.jconrel.2023.08.028.
|
| [51] |
WANG HX, LI MQ, LEE CM, et al. CRISPR/Cas9-based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery[J]. Chem Rev, 2017, 117( 15): 9874- 9906. DOI: 10.1021/acs.chemrev.6b00799.
|
| [52] |
KALASEKAR SM, VANSANT-WEBB CH, EVASON KJ. Intratumor heterogeneity in hepatocellular carcinoma: Challenges and opportunities[J]. Cancers(Basel), 2021, 13( 21): 5524. DOI: 10.3390/cancers13-215524.
|
| [53] |
TORBENSON MS. Hepatocellular carcinoma: Making sense of morphological heterogeneity, growth patterns, and subtypes[J]. Hum Pathol, 2021, 112: 86- 101. DOI: 10.1016/j.humpath.2020.12.009.
|
| [54] |
YOUNIS MA, HARASHIMA H. Understanding gene involvement in hepatocellular carcinoma: Implications for gene therapy and personalized medicine[J]. Pharmgenomics Pers Med, 2024, 17: 193- 213. DOI: 10.2147/PGPM.S431346.
|