中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

Development of a predictive model and application for spontaneous passage of common bile duct stones based on automated machine learning

DOI: 10.12449/JCH250319
Research funding:

Gusu Health Talent Training Project (GSWS2020109);

Suzhou 23rd Science and Technology Development Plan Project (SLT2023006);

Suzhou Clinical Key Disease Diagnosis and Treatment Technology Special Project (LCZX202334);

Changshu Science and Technology Development Plan Projects (CS202019);

Changshu Science and Technology Development Plan Projects (CSWS202316)

More Information
  • Corresponding author: XU Xiaodan, xxddocter@gmail.com (ORCID: 0009-0005-1947-3339)
  • Received Date: 2024-08-16
  • Accepted Date: 2024-09-06
  • Published Date: 2025-03-25

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (53) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return