[1] |
CHOWDHURY A, NABILA J, ADELUSI TEMITOPE I, et al. Current etiological comprehension and therapeutic targets of acetaminophen-induced hepatotoxicity[J]. Pharmacol Res, 2020, 161: 105102. DOI: 10.1016/j.phrs.2020.105102.
|
[2] |
JAESCHKE H, MURRAY FJ, MONNOT AD, et al. Assessment of the biochemical pathways for acetaminophen toxicity: Implications for its carcinogenic hazard potential[J]. Regul Toxicol Pharmacol, 2021, 120: 104859. DOI: 10.1016/j.yrtph.2020.104859.
|
[3] |
EICHENBAUM G, YANG K, GEBREMICHAEL Y, et al. Application of the DILIsym® Quantitative Systems Toxicology drug-induced liver injury model to evaluate the carcinogenic hazard potential of acetaminophen[J]. Regul Toxicol Pharmacol, 2020, 118: 104788. DOI: 10.1016/j.yrtph.2020.104788.
|
[4] |
BUNCHORNTAVAKUL C, RAJENDER REDDY K. Acetaminophen(APAP or N-acetyl-p-aminophenol) and acute liver failure[J]. Clin Liver Dis, 2018, 22( 2): 325- 346. DOI: 10.1016/j.cld.2018.01.007.
|
[5] |
BUDNITZ DS, LOVEGROVE MC, CROSBY AE. Emergency department visits for overdoses of acetaminophen-containing products[J]. Am J Prev Med, 2011, 40( 6): 585- 592. DOI: 10.1016/j.amepre.2011.02.026.
|
[6] |
YOON E, BABAR A, CHOUDHARY M, et al. Acetaminophen-induced hepatotoxicity: A comprehensive update[J]. J Clin Transl Hepatol, 2016, 4( 2): 131- 142. DOI: 10.14218/JCTH.2015.00052.
|
[7] |
DU YH, LIU Y, ZHANG QH, et al. Rescue of liver injury caused by acetaminophen and its precursor poisoning[J]. Shanxi Med J, 2018, 47( 18): 2206- 2209. DOI: 10.3969/j.issn.0253-9926.2018.18.034.
杜艳红, 刘研, 张秋红, 等. 对乙酰氨基酚及其前体中毒致肝损伤的解救[J]. 山西医药杂志, 2018, 47( 18): 2206- 2209. DOI: 10.3969/j.issn.0253-9926.2018.18.034.
|
[8] |
CZAJA MJ, DING WX, DONOHUE TM Jr, et al. Functions of autophagy in normal and diseased liver[J]. Autophagy, 2013, 9( 8): 1131- 1158. DOI: 10.4161/auto.25063.
|
[9] |
LANCASTER EM, HIATT JR, ZARRINPAR A. Acetaminophen hepatotoxicity: An updated review[J]. Arch Toxicol, 2015, 89( 2): 193- 199. DOI: 10.1007/s00204-014-1432-2.
|
[10] |
CAI XP, CAI HQ, WANG J, et al. Molecular pathogenesis of acetaminophen-induced liver injury and its treatment options[J]. J Zhejiang Univ Sci B, 2022, 23( 4): 265- 285. DOI: 10.1631/jzus.B2100977.
|
[11] |
QIU Y, BENET LZ, BURLINGAME AL. Identification of the hepatic protein targets of reactive metabolites of acetaminophen in vivo in mice using two-dimensional gel electrophoresis and mass spectrometry[J]. J Biol Chem, 1998, 273( 28): 17940- 17953. DOI: 10.1074/jbc.273.28.17940.
|
[12] |
WESTON CR, DAVIS RJ. The JNK signal transduction pathway[J]. Curr Opin Cell Biol, 2007, 19( 2): 142- 149. DOI: 10.1016/j.ceb.2007.02.001.
|
[13] |
WIN S, THAN TA, MIN RWM, et al. C-Jun N-terminal kinase mediates mouse liver injury through a novel Sab(SH3BP5)-dependent pathway leading to inactivation of intramitochondrial Src[J]. Hepatology, 2016, 63( 6): 1987- 2003. DOI: 10.1002/hep.28486.
|
[14] |
DU K, RAMACHANDRAN A, JAESCHKE H. Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential[J]. Redox Biol, 2016, 10: 148- 156. DOI: 10.1016/j.redox.2016.10.001.
|
[15] |
WANG LM, KLIONSKY DJ, SHEN HM. The emerging mechanisms and functions of microautophagy[J]. Nat Rev Mol Cell Biol, 2023, 24( 3): 186- 203. DOI: 10.1038/s41580-022-00529-z.
|
[16] |
YOSHII SR, MIZUSHIMA N. Monitoring and measuring autophagy[J]. Int J Mol Sci, 2017, 18( 9): 1865. DOI: 10.3390/ijms18091865.
|
[17] |
KAUSHIK S, BANDYOPADHYAY U, SRIDHAR S, et al. Chaperone-mediated autophagy at a glance[J]. J Cell Sci, 2011, 124( Pt 4): 495- 499. DOI: 10.1242/jcs.073874.
|
[18] |
FENG YC, HE D, YAO ZY, et al. The machinery of macroautophagy[J]. Cell Res, 2014, 24( 1): 24- 41. DOI: 10.1038/cr.2013.168.
|
[19] |
LAMARK T, JOHANSEN T. Mechanisms of selective autophagy[J]. Annu Rev Cell Dev Biol, 2021, 37: 143- 169. DOI: 10.1146/annurev-cellbio-120219-035530.
|
[20] |
TAKÁTS S, TÓTH S, SZENCI G, et al. Investigating non-selective autophagy in Drosophila[J]. Methods Mol Biol, 2019, 1880: 589- 600. DOI: 10.1007/978-1-4939-8873-0_38.
|
[21] |
VARGAS JNS, HAMASAKI M, KAWABATA T, et al. The mechanisms and roles of selective autophagy in mammals[J]. Nat Rev Mol Cell Biol, 2023, 24( 3): 167- 185. DOI: 10.1038/s41580-022-00542-2.
|
[22] |
WANG LM, QI H, TANG YC, et al. Post-translational modifications of key machinery in the control of mitophagy[J]. Trends Biochem Sci, 2020, 45( 1): 58- 75. DOI: 10.1016/j.tibs.2019.08.002.
|
[23] |
PAN M, SHI XY. Role of mitophagy in the development and progression of liver-related diseases[J]. J Clin Hepatol, 2024, 40( 2): 413- 418. DOI: 10.12449/JCH240232.
潘萌, 史晓燕. 线粒体自噬在肝脏相关疾病发生发展中的作用[J]. 临床肝胆病杂志, 2024, 40( 2): 413- 418. DOI: 10.12449/JCH240232.
|
[24] |
KIM J, GUAN KL. Regulation of the autophagy initiating kinase ULK1 by nutrients: Roles of mTORC1 and AMPK[J]. Cell Cycle, 2011, 10( 9): 1337- 1338. DOI: 10.4161/cc.10.9.15291.
|
[25] |
ITAKURA E, KISHI C, INOUE K, et al. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG[J]. Mol Biol Cell, 2008, 19( 12): 5360- 5372. DOI: 10.1091/mbc.e08-01-0080.
|
[26] |
CHEN T, TU SY, DING L, et al. The role of autophagy in viral infections[J]. J Biomed Sci, 2023, 30( 1): 5. DOI: 10.1186/s12929-023-00899-2.
|
[27] |
DIAO JJ, LIU R, RONG YG, et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes[J]. Nature, 2015, 520( 7548): 563- 566. DOI: 10.1038/nature14147.
|
[28] |
NI HM, BOCKUS A, BOGGESS N, et al. Activation of autophagy protects against acetaminophen-induced hepatotoxicity[J]. Hepatology, 2012, 55( 1): 222- 232. DOI: 10.1002/hep.24690.
|
[29] |
IGUSA Y, YAMASHINA S, IZUMI K, et al. Loss of autophagy promotes murine acetaminophen hepatotoxicity[J]. J Gastroenterol, 2012, 47( 4): 433- 443. DOI: 10.1007/s00535-011-0500-0.
|
[30] |
NI HM, MCGILL MR, CHAO XJ, et al. Removal of acetaminophen protein adducts by autophagy protects against acetaminophen-induced liver injury in mice[J]. J Hepatol, 2016, 65( 2): 354- 362. DOI: 10.1016/j.jhep.2016.04.025.
|
[31] |
WEI MJ. Chlorogenic acid promotes liver regeneration and recovery after acetaminophen-induced liver injury via the regulation of Egr1[D]. Shanghai: Shanghai University of Traditional Chinese Medicine, 2020.
卫梦娟. 绿原酸通过调控Egr1促进对乙酰氨基酚诱导肝损伤后再生修复的研究[D]. 上海: 上海中医药大学, 2020.
|
[32] |
TAN YL, HO HK. Hypothermia advocates functional mitochondria and alleviates oxidative stress to combat acetaminophen-induced hepatotoxicity[J]. Cells, 2020, 9( 11): 2354. DOI: 10.3390/cells9112354.
|
[33] |
YAN MZ, JIN SW, LIU YG, et al. Cajaninstilbene acid ameliorates acetaminophen-induced liver injury through enhancing Sestrin2/AMPK-mediated mitochondrial quality control[J]. Front Pharmacol, 2022, 13: 824138. DOI: 10.3389/fphar.2022.824138.
|
[34] |
HU T. Study of the effects and mechanism of augmenter of liver regeneration in acetaminophen-induced acute liver injury[D]. Chongqing: Chongqing Medical University, 2020.
胡婷. 肝再生增强因子在对乙酰氨基酚诱导的急性肝损伤中的作用及机制[D]. 重庆: 重庆医科大学, 2020.
|
[35] |
WANG H, NI HM, CHAO XJ, et al. Double deletion of PINK1 and Parkin impairs hepatic mitophagy and exacerbates acetaminophen-induced liver injury in mice[J]. Redox Biol, 2019, 22: 101148. DOI: 10.1016/j.redox.2019.101148.
|
[36] |
ZHANG XH, GUO LL, ZHANG XY, et al. GLT25D2 is critical for inflammatory immune response to promote acetaminophen-induced hepatotoxicity by autophagy pathway[J]. Front Pharmacol, 2020, 11: 01187. DOI: 10.3389/fphar.2020.01187.
|
[37] |
ZHANG JQ, ZHAO LC, HU C, et al. Fisetin prevents acetaminophen-induced liver injury by promoting autophagy[J]. Front Pharmacol, 2020, 11: 162. DOI: 10.3389/fphar.2020.00162.
|
[38] |
SHAN SL, SHEN ZY, ZHANG CQ, et al. Mitophagy protects against acetaminophen-induced acute liver injury in mice through inhibiting NLRP3 inflammasome activation[J]. Biochem Pharmacol, 2019, 169: 113643. DOI: 10.1016/j.bcp.2019.113643.
|
[39] |
HU BY, LI J, GONG DY, et al. Long-term consumption of food-derived chlorogenic acid protects mice against acetaminophen-induced hepatotoxicity via promoting PINK1-dependent mitophagy and inhibiting apoptosis[J]. Toxics, 2022, 10( 11): 665. DOI: 10.3390/toxics10110665.
|
[40] |
LI XY, YANG X, WANG Z, et al. Role of autophagy in development of hepatocellular carcinoma[J]. Acta Chin Med, 2024, 39( 3): 468- 474. DOI: 10.16368/j.issn.1674-8999.2024.03.079.
李萧雨, 杨星, 王振, 等. 自噬在肝细胞癌发病中的作用[J]. 中医学报, 2024, 39( 3): 468- 474. DOI: 10.16368/j.issn.1674-8999.2024.03.079.
|
[1] | Yishan LIU, Lanting ZHANG, Yunyu ZHAO, Fanpu JI, Qinglei ZENG. Management of hepatitis C in children and pregnant women[J]. Journal of Clinical Hepatology, 2024, 40(4): 654-658. doi: 10.12449/JCH240402 |
[2] | Jing KUANG, Shuangqin TENG, Tongtong SHEN, Yiran YAN, Wei WANG, Chuan SHEN, Caiyan ZHAO. Risk factors for portopulmonary hypertension in liver cirrhosis and construction of a predictive model[J]. Journal of Clinical Hepatology, 2024, 40(9): 1802-1806. doi: 10.12449/JCH240914 |
[3] | Shanshan XU, Lixia QIU, Yali LIU, Jing ZHANG. Risk factors and predictive models for liver cancer after sustained virologic response in hepatitis C[J]. Journal of Clinical Hepatology, 2024, 40(6): 1259-1263. doi: 10.12449/JCH240629 |
[4] | Tianfu LIU, Liang WANG, Lingyi ZHANG. Risk factors for non-neoplastic portal vein thrombosis in patients with liver cirrhosis[J]. Journal of Clinical Hepatology, 2023, 39(9): 2122-2127. doi: 10.3969/j.issn.1001-5256.2023.09.014 |
[5] | Gong FENG, Juanjuan SONG, Feng YE, Yonghong MA, Yilin REN, Ziyi ZHANG, Na HE, Xueping LI, Man MI. Recompensation of liver cirrhosis: Current status and challenges[J]. Journal of Clinical Hepatology, 2023, 39(10): 2464-2469. doi: 10.3969/j.issn.1001-5256.2023.10.027 |
[6] | Bingbing ZHU, Jinxiang YANG, Qun ZHANG, Fangyuan GAO, Xianbo WANG. Risk factors for the 90-day prognosis of patients with type I hepatorenal syndrome and establishment of a predictive model[J]. Journal of Clinical Hepatology, 2022, 38(7): 1561-1565. doi: 10.3969/j.issn.1001-5256.2022.07.019 |
[7] | Siqin LIU, Xiaomei WANG, Xia LI, Luwen LIANG, Ke WANG, Rui WANG. Covert hepatic encephalopathy in liver cirrhosis: Risk factors and prognosis[J]. Journal of Clinical Hepatology, 2022, 38(2): 359-364. doi: 10.3969/j.issn.1001-5256.2022.02.020 |
[8] | Jiajia RUAN, Shifei WEN, Xia WANG, Li LI, Juanjuan FU, Xiucheng PAN. Influencing factors for recompensation in patients with first-time decompensated hepatitis B cirrhosis[J]. Journal of Clinical Hepatology, 2022, 38(8): 1796-1800. doi: 10.3969/j.issn.1001-5256.2022.08.015 |
[9] | Zhiying HE, Bingqiong WANG, Hong YOU. Liver cirrhosis: Decompensation and "recompensation"[J]. Journal of Clinical Hepatology, 2022, 38(5): 1002-1005. doi: 10.3969/j.issn.1001-5256.2022.05.006 |
[10] | Shanshan LI, Manman XU, Zhongping DUAN, Yu CHEN. Risk factors for liver cirrhosis in acute-on-chronic liver failure patients without liver cirrhosis in the convalescence stage[J]. Journal of Clinical Hepatology, 2021, 37(12): 2824-2829. doi: 10.3969/j.issn.1001-5256.2021.12.019 |
[11] | LI ZhengHong, DONG YuWei, LU LunGen. Risk factors,diagnosis,and updated classification of hepatorenal syndrome[J]. Journal of Clinical Hepatology, 2020, 36(11): 2411-2414. doi: 10.3969/j.issn.1001-5256.2020.11.003 |
[12] | Ruan FangMing, Li BiMin. Risk factors for the formation of portal vein thrombosis in patients with liver cirrhosis[J]. Journal of Clinical Hepatology, 2020, 36(1): 182-185. doi: 10.3969/j.issn.1001-5256.2020.01.043 |
[13] | Lyu Jing, Dong SiSi, Gu HongTu, Zhao ZhangQing, Liu ChengHai. TCM syndrome characteristics of portal vein thrombosis in patients with liver cirrhosis and related risk factors[J]. Journal of Clinical Hepatology, 2019, 35(10): 2210-2213. doi: 10.3969/j.issn.1001-5256.2019.10.016 |
[14] | He Yang, Su YaRong, Han ZiYan. Current status of research on primary and secondary risk factors for esophagogastric variceal rebleeding in patients with liver cirrhosis[J]. Journal of Clinical Hepatology, 2018, 34(7): 1555-1559. doi: 10.3969/j.issn.1001-5256.2018.07.041 |
[15] | Jin Yan, Wang Xue, Zhang LingJuan, Qiu Ting, Shang BoXin, Lian XiaoYan, Yan ChunYing, Duan TianJiao, Zhang Rong, Liu GuiSheng. Risk factors for early rebleeding after esophageal variceal ligation in patients with liver cirrhosis[J]. Journal of Clinical Hepatology, 2017, 33(11): 2147-2151. doi: 10.3969/j.issn.1001-5256.2017.11.019 |
[16] | Yu ZhiRui, Wei GuoXi, Liu QiChang, Jin PeiMin. Risk factors for HBV-related liver cirrhosis complicated by acute upper gastrointestinal bleeding[J]. Journal of Clinical Hepatology, 2017, 33(5): 860-863. doi: 10.3969/j.issn.1001-5256.2017.05.013 |
[17] | Zhou RenHua, Li Peng, Zhang YanTing, Yang Hua, Yang ShaoQi. Clinical manifestations of portal vein thrombosis and related risk factors in patients with liver cirrhosis[J]. Journal of Clinical Hepatology, 2016, 32(2): 275-278. doi: 10.3969/j.issn.1001-5256.2016.02.015 |
[18] | Yang Hua, Liu YunXia, Li Peng, Yang ShaoQi, Wang YuanZhen. Analysis of risk factors for early rebleeding from esophageal and gastric varices in patients with liver cirrhosis[J]. Journal of Clinical Hepatology, 2014, 30(6): 540-542. doi: 10.3969/j.issn.1001-5256.2014.06.015 |
[19] | Wang Hong. Risk factors for patients with cirrhosis developed renal dysfunction[J]. Journal of Clinical Hepatology, 2004, 20(2): 101-102. |