[1] |
COLONNA M. The biology of TREM receptors[J]. Nat Rev Immunol, 2023, 23( 9): 580- 594. DOI: 10.1038/s41577-023-00837-1.
|
[2] |
ULLAND TK, SONG WM, HUANG SC, et al. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease[J]. Cell, 2017, 170( 4): 649- 663. e 13. DOI: 10.1016/j.cell.2017.07.023.
|
[3] |
SUN HF, FENG JG, TANG LL. Function of TREM1 and TREM2 in liver-related diseases[J]. Cells, 2020, 9( 12): 2626. DOI: 10.3390/cells9122626.
|
[4] |
HENDRIKX T, PORSCH F, KISS MG, et al. Soluble TREM2 levels reflect the recruitment and expansion of TREM2+ macrophages that localize to fibrotic areas and limit NASH[J]. J Hepatol, 2022, 77( 5): 1373- 1385. DOI: 10.1016/j.jhep.2022.06.004.
|
[5] |
INDIRA CHANDRAN V, WERNBERG CW, LAURIDSEN MM, et al. Circulating TREM2 as a noninvasive diagnostic biomarker for NASH in patients with elevated liver stiffness[J]. Hepatology, 2023, 77( 2): 558- 572. DOI: 10.1002/hep.32620.
|
[6] |
PERUGORRIA MJ, ESPARZA-BAQUER A, OAKLEY F, et al. Non-parenchymal TREM-2 protects the liver from immune-mediated hepatocellular damage[J]. Gut, 2019, 68( 3): 533- 546. DOI: 10.1136/gutjnl-2017-314107.
|
[7] |
XIONG XL, KUANG H, ANSARI S, et al. Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis[J]. Mol Cell, 2019, 75( 3): 644- 660. e 5. DOI: 10.1016/j.molcel.2019.07.028.
|
[8] |
GOVAERE O, COCKELL S, TINIAKOS D, et al. Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis[J]. Sci Transl Med, 2020, 12( 572): eaba4448. DOI: 10.1126/scitranslmed.aba4448.
|
[9] |
ESPARZA-BAQUER A, LABIANO I, SHARIF O, et al. TREM-2 defends the liver against hepatocellular carcinoma through multifactorial protective mechanisms[J]. Gut, 2021, 70( 7): 1345- 1361. DOI: 10.1136/gutjnl-2019-319227.
|
[10] |
MOLGORA M, ESAULOVA E, VERMI W, et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy[J]. Cell, 2020, 182( 4): 886- 900. e 17. DOI: 10.1016/j.cell.2020.07.013.
|
[11] |
HAN S, LI XD, XIA N, et al. Myeloid Trem2 dynamically regulates the induction and resolution of hepatic ischemia-reperfusion injury inflammation[J]. Int J Mol Sci, 2023, 24( 7): 6348. DOI: 10.3390/ijms24076348.
|
[12] |
LANIER LL, CORLISS BC, WU J, et al. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells[J]. Nature, 1998, 391( 6668): 703- 707. DOI: 10.1038/35642.
|
[13] |
ULLAND TK, COLONNA M. TREM2—a key player in microglial biology and Alzheimer disease[J]. Nat Rev Neurol, 2018, 14: 667- 675. DOI: 10.1038/s41582-018-0072-1.
|
[14] |
PENG QS, MALHOTRA S, TORCHIA JA, et al. TREM2- and DAP12-dependent activation of PI3K requires DAP10 and is inhibited by SHIP1[J]. Sci Signal, 2010, 3( 122): ra38. DOI: 10.1126/scisignal.2000500.
|
[15] |
KOBER DL, BRETT TJ. TREM2-ligand interactions in health and disease[J]. J Mol Biol, 2017, 429( 11): 1607- 1629. DOI: 10.1016/j.jmb.2017.04.004.
|
[16] |
HAMERMAN JA, JARJOURA JR, HUMPHREY MB, et al. Cutting edge: Inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells(TREM)-2 and DAP12[J]. J Immunol, 2006, 177( 4): 2051- 2055. DOI: 10.4049/jimmunol.177.4.2051.
|
[17] |
PALONEVA J, MANDELIN J, KIIALAINEN A, et al. DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features[J]. J Exp Med, 2003, 198( 4): 669- 675. DOI: 10.1084/jem.20030027.
|
[18] |
BHARADWAJ S, GROZA Y, MIERZWICKA JM, et al. Current understanding on TREM-2 molecular biology and physiopathological functions[J]. Int Immunopharmacol, 2024, 134: 112042. DOI: 10.1016/j.intimp.2024.112042.
|
[19] |
KHANTAKOVA D, BRIOSCHI S, MOLGORA M. Exploring the impact of TREM2 in tumor-associated macrophages[J]. Vaccines(Basel), 2022, 10( 6): 943. DOI: 10.3390/vaccines10060943.
|
[20] |
FEUERBACH D, SCHINDLER P, BARSKE C, et al. ADAM17 is the main sheddase for the generation of human triggering receptor expressed in myeloid cells(hTREM2) ectodomain and cleaves TREM2 after Histidine 157[J]. Neurosci Lett, 2017, 660: 109- 114. DOI: 10.1016/j.neulet.2017.09.034.
|
[21] |
NI M, ZHANG J, SOSA R, et al. T-cell immunoglobulin and mucin domain-containing protein-4 is critical for kupffer cell homeostatic function in the activation and resolution of liver ischemia reperfusion injury[J]. Hepatology, 2021, 74( 4): 2118- 2132. DOI: 10.1002/hep.31906.
|
[22] |
POWELL EE, WONG VW, RINELLA M. Non-alcoholic fatty liver disease[J]. Lancet, 2021, 397( 10290): 2212- 2224. DOI: 10.1016/S0140-6736(20)32511-3.
|
[23] |
LEUNG PB, DAVIS AM, KUMAR S. Diagnosis and management of nonalcoholic fatty liver disease[J]. JAMA, 2023, 330( 17): 1687- 1688. DOI: 10.1001/jama.2023.17935.
|
[24] |
LIEBOLD I, MEYER S, HEINE M, et al. TREM2 regulates the removal of apoptotic cells and inflammatory processes during the progression of NAFLD[J]. Cells, 2023, 12( 3): 341. DOI: 10.3390/cells12030341.
|
[25] |
DAWS MR, SULLAM PM, NIEMI EC, et al. Pattern recognition by TREM-2: Binding of anionic ligands[J]. J Immunol, 2003, 171( 2): 594- 599. DOI: 10.4049/jimmunol.171.2.594.
|
[26] |
TURNBULL IR, GILFILLAN S, CELLA M, et al. Cutting edge: TREM-2 attenuates macrophage activation[J]. J Immunol, 2006, 177( 6): 3520- 3524. DOI: 10.4049/jimmunol.177.6.3520.
|
[27] |
WANG XC, HE QF, ZHOU CL, et al. Prolonged hypernutrition impairs TREM2-dependent efferocytosis to license chronic liver inflammation and NASH development[J]. Immunity, 2023, 56( 1): 58- 77. e 11. DOI: 10.1016/j.immuni.2022.11.013.
|
[28] |
HOU JC, ZHANG J, CUI P, et al. TREM2 sustains macrophage-hepatocyte metabolic coordination in nonalcoholic fatty liver disease and sepsis[J]. J Clin Invest, 2021, 131( 4): e135197. DOI: 10.1172/JCI135197.
|
[29] |
ZHOU LK, QIU XX, MENG ZY, et al. Hepatic danger signaling triggers TREM2+ macrophage induction and drives steatohepatitis via MS4A7-dependent inflammasome activation[J]. Sci Transl Med, 2024, 16( 738): eadk1866. DOI: 10.1126/scitranslmed.adk1866.
|
[30] |
WOOLBRIGHT BL, JAESCHKE H. Inflammation and cell death during cholestasis: The evolving role of bile acids[J]. Gene Expr, 2019, 19( 3): 215- 228. DOI: 10.3727/105221619X15614873062730.
|
[31] |
de VRIES E, BEUERS U. Management of cholestatic disease in 2017[J]. Liver Int, 2017, 37( Suppl 1): 123- 129. DOI: 10.1111/liv.13306.
|
[32] |
LABIANO I, AGIRRE-LIZASO A, OLAIZOLA P, et al. TREM-2 plays a protective role in cholestasis by acting as a negative regulator of inflammation[J]. J Hepatol, 2022, 77( 4): 991- 1004. DOI: 10.1016/j.jhep.2022.05.044.
|
[33] |
IREDALE JP. Models of liver fibrosis: Exploring the dynamic nature of inflammation and repair in a solid organ[J]. J Clin Invest, 2007, 117( 3): 539- 548. DOI: 10.1172/JCI30542.
|
[34] |
KISSELEVA T, BRENNER D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol, 2021, 18( 3): 151- 166. DOI: 10.1038/s41575-020-00372-7.
|
[35] |
RAMACHANDRAN P, DOBIE R, WILSON-KANAMORI JR, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level[J]. Nature, 2019, 575( 7783): 512- 518. DOI: 10.1038/s41586-019-1631-3.
|
[36] |
ZHU DD, HUANG M, SHEN P, et al. TREM2 expression promotes liver and peritoneal M2 macrophage polarization in mice infected with Schistosoma japonicum[J]. J Cell Mol Med, 2023, 27( 15): 2261- 2269. DOI: 10.1111/jcmm.17842.
|
[37] |
YE ZH, HUANG SG, ZHANG YX, et al. Galectins, eosinophiles, and macrophages may contribute to Schistosoma japonicum egg-induced immunopathology in a mouse model[J]. Front Immunol, 2020, 11: 146. DOI: 10.3389/fimmu.2020.00146.
|
[38] |
SHAN S, CHAO S, LIU Z, et al. TREM2 protects against inflammation by regulating the release of mito-DAMPs from hepatocytes during liver fibrosis[J]. Free Radic Biol Med, 2024, 220: 154- 165. DOI: 10.1016/j.freeradbiomed.2024.05.004.
|
[39] |
MANTOVANI A, MARCHESI F, MALESCI A, et al. Tumour-associated macrophages as treatment targets in oncology[J]. Nat Rev Clin Oncol, 2017, 14( 7): 399- 416. DOI: 10.1038/nrclinonc.2016.217.
|
[40] |
DENARDO DG, RUFFELL B. Macrophages as regulators of tumour immunity and immunotherapy[J]. Nat Rev Immunol, 2019, 19( 6): 369- 382. DOI: 10.1038/s41577-019-0127-6.
|
[41] |
CASSETTA L, POLLARD JW. Targeting macrophages: Therapeutic approaches in cancer[J]. Nat Rev Drug Discov, 2018, 17( 12): 887- 904. DOI: 10.1038/nrd.2018.169.
|
[42] |
WANG QY, ZHENG K, TAN D, et al. TREM2 knockdown improves the therapeutic effect of PD-1 blockade in hepatocellular carcinoma[J]. Biochem Biophys Res Commun, 2022, 636( Pt 1): 140- 146. DOI: 10.1016/j.bbrc.2022.10.079.
|
[43] |
ZHOU LS, WANG ML, GUO HR, et al. Integrated analysis highlights the immunosuppressive role of TREM2+ macrophages in hepatocellular carcinoma[J]. Front Immunol, 2022, 13: 848367. DOI: 10.3389/fimmu.2022.848367.
|
[44] |
VOGEL A, MEYER T, SAPISOCHIN G, et al. Hepatocellular carcinoma[J]. Lancet, 2022, 400( 10360): 1345- 1362. DOI: 10.1016/S0140-6736(22)01200-4.
|
[45] |
PALMER DH, MALAGARI K, KULIK LM. Role of locoregional therapies in the wake of systemic therapy[J]. J Hepatol, 2020, 72( 2): 277- 287. DOI: 10.1016/j.jhep.2019.09.023.
|
[46] |
SUN YF, WU L, ZHONG Y, et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma[J]. Cell, 2021, 184( 2): 404- 421. e 16. DOI: 10.1016/j.cell.2020.11.041.
|
[47] |
TAN JZ, FAN WZ, LIU T, et al. TREM2+ macrophages suppress CD8+ T-cell infiltration after transarterial chemoembolisation in hepatocellular carcinoma[J]. J Hepatol, 2023, 79( 1): 126- 140. DOI: 10.1016/j.jhep.2023.02.032.
|