中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 40 Issue 10
Oct.  2024
Turn off MathJax
Article Contents

Causal association of liver function and lipid metabolism levels with sleep disorders based on Mendelian randomization

DOI: 10.12449/JCH241020
More Information
  • Corresponding author: HE Wei, 297378127@qq.com (ORCID: 0009-0009-5281-734X)
  • Received Date: 2024-01-27
  • Accepted Date: 2024-05-23
  • Published Date: 2024-10-25
  •   Objective  To investigate the causal association of liver function and lipid metabolism levels with sleep disorders based on the Mendelian randomization analysis.  Methods  The analysis was conducted using the data from genome-wide association studies, with the exposure factors of liver function and lipid metabolism levels (alanine aminotransferase [ALT], aspartate aminotransferase [AST], gamma-glutamyl transpeptidase [GGT], albumin [Alb], serum total protein [TP], total bilirubin [TBil], alkaline phosphatase [ALP], triglyceride [TG], triglyceride-to-glycerol-3-phosphate [TG/G3P] ratio, total cholesterol [TC], high-density lipoprotein cholesterol [HDL-C], low-density lipoprotein cholesterol [LDL-C], poly-unsaturated fatty acids [PUFA], total fatty acids [TFA], PUFA/TFA ratio) and the outcome factor of sleep disorders (nonorganic). The regression models including inverse variance weighted, MR-Egger, Simple mode, weighted median, and Weighted mode were used to perform the Mendelian randomization analysis.  Results  Serum Alb (odds ratio [OR]=0.728, 95% confidence interval [CI]: 0.535 ‍—‍‍ 0.989, P<0.05), HDL-C (OR=0.879, 95%CI: 0.784 ‍—‍ 0.986, P<0.05), and PUFA/TFA ratio (OR=0.800, 95%CI: 0.642 — 0.998, P<0.05) were negatively associated with sleep disorders, while TG/G3P ratio (OR=1.222, 95%CI: 1.044 ‍—‍ 1.431, P<0.05) was positively associated with sleep disorders. The results of Mendelian randomization did not show a causal association of ALT, AST, GGT, TP, TBil, ALP, TG, TC, LDL-C, PUFA, and TFA with sleep disorders (all P>0.05). The results of the MR-Egger intercept test showed no pleiotropy (P>0.05), and Mendelian randomization was a valid method for causal inference in this study.  Conclusion  According to the results of the Mendelian randomization analysis, liver function and lipid metabolism show significant association with sleep disorders. Liver function and lipid metabolism can be used as indicators for predicting the risk of sleep disorders and performing intervention.

     

  • loading
  • [1]
    SATEIA MJ. International classification of sleep disorders-third edition: Highlights and modifications[J]. Chest, 2014, 146( 5): 1387- 1394. DOI: 10.1378/chest.14-0970.
    [2]
    ZHANG JH, ZHANG XQ, ZHANG KX, et al. An updated of meta-analysis on the relationship between mobile phone addiction and sleep disorder[J]. J Affect Disord, 2022, 305: 94- 101. DOI: 10.1016/j.jad.2022.02.008.
    [3]
    JAHRAMI HA, ALHAJ OA, HUMOOD AM, et al. Sleep disturbances during the COVID-19 pandemic: A systematic review, meta-analysis, and meta-regression[J]. Sleep Med Rev, 2022, 62: 101591. DOI: 10.1016/j.smrv.2022.101591.
    [4]
    NIE QR, SHEN Y, LUO MQ, et al. Analysis of sleep for the American population: Result from NHANES database[J]. J Affect Disord, 2024, 347: 134- 143. DOI: 10.1016/j.jad.2023.11.082.
    [5]
    CHU XM, LIU L, YE J, et al. Insomnia affects the levels of plasma bilirubin and protein metabolism: An observational study and GWGEIS in UK Biobank cohort[J]. Sleep Med, 2021, 85: 184- 190. DOI: 10.1016/j.sleep.2021.05.040.
    [6]
    CHEN LD, HUANG JF, CHEN GP, et al. Association and gender difference analysis of obstructive sleep apnea hypopnea syndrome and liver injury[J]. Natl Med J China, 2022, 102( 8): 550- 554. DOI: 10.3760/cma.j.cn112137-20210617-01371.

    陈理达, 黄杰凤, 陈公平, 等. 阻塞性睡眠呼吸暂停低通气综合征与肝损伤的关联及性别差异分析[J]. 中华医学杂志, 2022, 102( 8): 550- 554. DOI: 10.3760/cma.j.cn112137-20210617-01371.
    [7]
    PAN QY, LI HQ, GAN XY, et al. Relationship between slow-wave sleep and serum γ-glutamine transaminase in non-obese men with obstructive sleep apnea-hypopnea syndrome[J]. Schlaf Atmung, 2023, 27( 5): 1717- 1724. DOI: 10.1007/s11325-022-02775-z.
    [8]
    PROCHAZKOVA P, SONKA K, ROUBALOVA R, et al. Investigation of anti-neuronal antibodies and disparity in central hypersomnias[J]. Sleep Med, 2024, 113: 220- 231. DOI: 10.1016/j.sleep.2023.11.039.
    [9]
    SÖKÜCÜ SN, AYDıN Ş, SATıCı C, et al. Triglyceride-glucose index as a predictor of obstructive sleep apnoea severity in the absence of traditional risk factors[J]. Arq Neuropsiquiatr, 2023, 81( 10): 891- 897. DOI: 10.1055/s-0043-1776411.
    [10]
    LI LM, YOU WY, REN W. The ZJU index is a powerful index for identifying NAFLD in the general Chinese population[J]. Acta Diabetol, 2017, 54( 10): 905- 911. DOI: 10.1007/s00592-017-1024-8.
    [11]
    WANG LP, NIE GQ, YAN FQ, et al. The ZJU index is associated with the risk of obstructive sleep apnea syndrome in Chinese middle-aged and older people: A cross-sectional study[J]. Lipids Health Dis, 2023, 22( 1): 207. DOI: 10.1186/s12944-023-01974-1.
    [12]
    YU TQ, XU WT, SU YN, et al. Mendelian randomization: The basic principles, methods and limitations[J]. Chin J Evid Based Med, 2021, 21( 10): 1227- 1234. DOI: 10.7507/1672-2531.202107008.

    于天琦, 徐文涛, 苏雅娜, 等. 孟德尔随机化研究基本原理、方法和局限性[J]. 中国循证医学杂志, 2021, 21( 10): 1227- 1234. DOI: 10.7507/1672-2531.202107008.
    [13]
    HE SM, ZHANG Y, PENG LQ, et al. Research progress of propensity score and Mendelian randomization in China[J]. Chin J Dis Contr Prev, 2022, 26( 3): 325- 330. DOI: 10.16462/j.cnki.zhjbkz.2022.03.014.

    和思敏, 张雨, 彭刘庆, 等. 倾向性评分与孟德尔随机化国内研究现状[J]. 中华疾病控制杂志, 2022, 26( 3): 325- 330. DOI: 10.16462/j.cnki.zhjbkz.2022.03.014.
    [14]
    WANG J, ZHANG GY, CHENG S. Good practices in Mendelian randomization: Common designs, key challenges, and optimization in Mendelian randomization analysis[J]. J Cap Med Univ, 2023, 9( 6): 1087- 1094.

    王晶, 张国燕, 程杉. 孟德尔随机化的良好实践: 孟德尔随机化分析的常见设计、关键挑战及优化[J]. 首都医科大学学报, 2023, 9( 6): 1087- 1094.
    [15]
    PINGAULT JB, O’REILLY PF, SCHOELER T, et al. Using genetic data to strengthen causal inference in observational research[J]. Nat Rev Genet, 2018, 19( 9): 566- 580. DOI: 10.1038/s41576-018-0020-3.
    [16]
    ELSWORTH B, LYON M, ALEXANDER T, et al. The MRC IEU OpenGWAS data infrastructure[J]. bioRxiv, 2020. DOI: 10.1101/2020.08.10.244293
    [17]
    HEMANI G, ZHENG J, ELSWORTH B, et al. The MR-Base platform supports systematic causal inference across the human phenome[J]. Elife, 2018, 7: e34408. DOI: 10.7554/eLife.34408.
    [18]
    BARTON AR, SHERMAN MA, MUKAMEL RE, et al. Whole-exome imputation within UK Biobank powers rare coding variant association and fine-mapping analyses[J]. Nat Genet, 2021, 53( 8): 1260- 1269. DOI: 10.1038/s41588-021-00892-1.
    [19]
    SAKAUE S, KANAI M, TANIGAWA Y, et al. A cross-population atlas of genetic associations for 220 human phenotypes[J]. Nat Genet, 2021, 53( 10): 1415- 1424. DOI: 10.1038/s41588-021-00931-x.
    [20]
    RICHARDSON TG, LEYDEN GM, WANG Q, et al. Characterising metabolomic signatures of lipid-modifying therapies through drug target Mendelian randomisation[J]. PLoS Biol, 2022, 20( 2): e3001547. DOI: 10.1371/journal.pbio.3001547.
    [21]
    Genetics TREHEARNE A., lifestyle and environment. UK Biobank is an open access resource following the lives of 500, 000 participants to improve the health of future generations[J]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 2016, 59( 3): 361- 367. DOI: 10.1007/s00103-015-2297-0.
    [22]
    OLLIER W, SPROSEN T, PEAKMAN T. UK Biobank: From concept to reality[J]. Pharmacogenomics, 2005, 6( 6): 639- 646. DOI: 10.2217/14622416.6.6.639.
    [23]
    KETTUNEN J, DEMIRKAN A, WÜRTZ P, et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA[J]. Nat Commun, 2016, 7: 11122. DOI: 10.1038/ncomms11122.
    [24]
    FERINI-STRAMBI L, LIGUORI C, LUCEY BP, et al. Role of sleep in neurodegeneration: The consensus report of the 5th Think Tank World Sleep Forum[J]. Neurol Sci, 2024, 45( 2): 749- 767. DOI: 10.1007/s10072-023-07232-7.
    [25]
    ZHAI XJ, ZHAO HY, YANG M, et al. Relationship between abnormal lipid metabolism and insomnia in elderly hypertensive patients[J]. Clin J Med Offic, 2022, 50( 9): 972- 974. DOI: 10.16680/j.1671-3826.2022.09.28.

    翟晓君, 赵会颖, 杨萌, 等. 老年高血压患者脂质代谢异常与失眠关系研究[J]. 临床军医杂志, 2022, 50( 9): 972- 974. DOI: 10.16680/j.1671-3826.2022.09.28.
    [26]
    SANG D, LIN KT, YANG YN, et al. Prolonged sleep deprivation induces a cytokine-storm-like syndrome in mammals[J]. Cell, 2023, 186( 25): 5500- 5516. e 21. DOI: 10.1016/j.cell.2023.10.025.
    [27]
    MOSTAFA AM, HAFEZ SM, ABDULLAH NM, et al. Fatigue, depression, and sleep disorders are more prevalent in patients with metabolic-associated fatty liver diseases[J]. Eur J Gastroenterol Hepatol, 2024, 36( 5): 665- 673. DOI: 10.1097/MEG.0000000000002752.
    [28]
    LEE CH, MURRELL CE, CHU A, et al. Circadian regulation of apolipoproteins in the brain: Implications in lipid metabolism and disease[J]. Int J Mol Sci, 2023, 24( 24): 17415. DOI: 10.3390/ijms242417415.
    [29]
    CHU YX, ZHANG YJ, LIU JX, et al. An integrated liver, hippocampus and serum metabolomics based on UPLC-Q-TOF-MS revealed the therapeutical mechanism of Ziziphi Spinosae Semen in p-chlorophenylalanine-induced insomnia rats[J]. Biomed Chromatogr, 2024, 38( 3): e5796. DOI: 10.1002/bmc.5796.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article Metrics

    Article views (193) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return