中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 40 Issue 3
Mar.  2024
Turn off MathJax
Article Contents

Re-understanding of the mechanism of coagulation disorder in liver cirrhosis

DOI: 10.12449/JCH240330
Research funding:

Shaanxi Provincial Education Science “13th Five-Year Plan” Project (SGH20Y1330);

Youan Specialist Medical Alliance for Liver and Infectious Diseases Special Fund (LM202003);

Shaanxi Institute of Basic Science (Chemistry and Biology) 2022 Basic Science Research Programme Projects (22JHQ09)

More Information
  • Corresponding author: YAN Honglin, yanhonglin666@163.com (ORCID: 0009-0003-3060-7348)
  • Received Date: 2023-07-16
  • Accepted Date: 2023-08-14
  • Published Date: 2024-03-20
  • The liver plays an important regulatory role in maintaining the dynamic balance of coagulation and anticoagulation in the body. Such dynamic balance is fragile in patients with liver cirrhosis, and the risk of bleeding can be increased due to reductions in coagulation factors and platelet count and excessive fibrinolysis; meanwhile, thrombus can be formed due to the increases in von Willebrand factor and coagulation factor Ⅷ, the reductions in anticoagulant protein C and anticoagulant protein S, the increase in thrombin-generating potential, and alterations in antifibrinolytic components. This article reviews the mechanisms of coagulation disorder in liver cirrhosis, so as to help clinicians with the prevention and treatment of bleeding or thrombotic disorders in patients with liver cirrhosis.

     

  • loading
  • [1]
    JIANG H, LI Y, SHENG Q, et al. Relationship between hepatitis B virus infection and platelet production and dysfunction[J]. Platelets, 2022, 33( 2): 212- 218. DOI: 10.1080/09537104.2021.2002836.
    [2]
    DAHAL S, UPADHYAY S, BANJADE R, et al. Thrombocytopenia in patients with chronic hepatitis C virus infection[J]. Mediterr J Hematol Infect Dis, 2017, 9( 1): e2017019. DOI: 10.4084/MJHID.2017.019.
    [3]
    SILCZUK A, HABRAT B. Alcohol-induced thrombocytopenia: Current review[J]. Alcohol, 2020, 86: 9- 16. DOI: 10.1016/j.alcohol.2020.02.166.
    [4]
    BASILI S, RAPARELLI V, NAPOLEONE L, et al. Platelet count does not predict bleeding in cirrhotic patients: results from the PRO-LIVER study[J]. Am J Gastroenterol, 2018, 113( 3): 368- 375. DOI: 10.1038/ajg.2017.457.
    [5]
    ZANETTO A, CAMPELLO E, BULATO C, et al. Increased platelet aggregation in patients with decompensated cirrhosis indicates higher risk of further decompensation and death[J]. J Hepatol, 2022, 77( 3): 660- 669. DOI: 10.1016/j.jhep.2022.03.009.
    [6]
    BASILI S, RAPARELLI V, RIGGIO O, et al. NADPH oxidase-mediated platelet isoprostane over-production in cirrhotic patients: implication for platelet activation[J]. Liver Int, 2011, 31( 10): 1533- 1540. DOI: 10.1111/j.1478-3231.2011.02617.x.
    [7]
    EGAN K, DILLON A, DUNNE E, et al. Increased soluble GPVI levels in cirrhosis: evidence for early in vivo platelet activation[J]. J Thromb Thrombolysis, 2017, 43( 1): 54- 59. DOI: 10.1007/s11239-016-1401-0.
    [8]
    MATSUI T, USUI M, WADA H, et al. Platelet activation assessed by glycoprotein vi/platelet ratio is associated with portal vein thrombosis after hepatectomy and splenectomy in patients with liver cirrhosis[J]. Clin Appl Thromb Hemost, 2018, 24( 2): 254- 262. DOI: 10.1177/1076029617725600.
    [9]
    CHEN SH, TSAI SC, LU HC. Platelets as a gauge of liver disease kinetics?[J]. Int J Mol Sci, 2022, 23( 19). DOI: 10.3390/ijms231911460.
    [10]
    TRIPODI A, PRIMIGNANI M, CHANTARANGKUL V, et al. An imbalance of pro-vs anti-coagulation factors in plasma from patients with cirrhosis[J]. Gastroenterology, 2009, 137( 6): 2105- 2111. DOI: 10.1053/j.gastro.2009.08.045.
    [11]
    POOTHONG J, POTTEKAT A, SIIRIN M, et al. Factor Ⅷ exhibits chaperone-dependent and glucose-regulated reversible amyloid formation in the endoplasmic reticulum[J]. Blood, 2020, 135( 21): 1899- 1911. DOI: 10.1182/blood.2019002867.
    [12]
    ZHANG K, WANG S, MALHOTRA J, et al. The unfolded protein response transducer IRE1α prevents ER stress-induced hepatic steatosis[J]. EMBO J, 2011, 30( 7): 1357- 1375. DOI: 10.1038/emboj.2011.52.
    [13]
    SINEGRE T, DURON C, LECOMPTE T, et al. Increased factor VIII plays a significant role in plasma hypercoagulability phenotype of patients with cirrhosis[J]. J Thromb Haemost, 2018, 16( 6): 1132- 1140. DOI: 10.1111/jth.14011.
    [14]
    TRIPODI A, PRIMIGNANI M, LEMMA L, et al. Evidence that low protein C contributes to the procoagulant imbalance in cirrhosis[J]. J Hepatol, 2013, 59( 2): 265- 270. DOI: 10.1016/j.jhep.2013.03.036.
    [15]
    SCHEINER B, BALCAR L, NUSSBAUMER RJ, et al. Factor VIII/protein C ratio independently predicts liver-related events but does not indicate a hypercoagulable state in ACLD[J]. J Hepatol, 2022, 76( 5): 1090- 1099. DOI: 10.1016/j.jhep.2021.12.038.
    [16]
    BOS S, van den BOOM B, KAMPHUISEN PW, et al. Haemostatic profiles are similar across all aetiologies of cirrhosis[J]. Thromb Haemost, 2019, 119( 2): 246- 253. DOI: 10.1055/s-0038-1676954.
    [17]
    TRIPODI A, PRIMIGNANI M, LEMMA L, et al. Detection of the imbalance of procoagulant versus anticoagulant factors in cirrhosis by a simple laboratory method[J]. Hepatology, 2010, 52( 1): 249- 255. DOI: 10.1002/hep.23653.
    [18]
    TAKAYA H, NAMISAKI T, ASADA S, et al. ADAMTS13, VWF, and endotoxin are interrelated and associated with the severity of liver cirrhosis via hypercoagulability[J]. J Clin Med, 2022, 11( 7): 1835. DOI: 10.3390/jcm11071835.
    [19]
    PÉPIN M, KLEINJAN A, HAJAGE D, et al. ADAMTS-13 and von Willebrand factor predict venous thromboembolism in patients with cancer[J]. J Thromb Haemost, 2016, 14( 2): 306- 315. DOI: 10.1111/jth.13205.
    [20]
    ZERMATTEN MG, FRAGA M, MORADPOUR D, et al. Hemostatic alterations in patients with cirrhosis: from primary hemostasis to fibrinolysis[J]. Hepatology, 2020, 71( 6): 2135- 2148. DOI: 10.1002/hep.31201.
    [21]
    KUME Y, IKEDA H, INOUE M, et al. Hepatic stellate cell damage may lead to decreased plasma ADAMTS13 activity in rats[J]. FEBS Lett, 2007, 581( 8): 1631- 1634. DOI: 10.1016/j.febslet.2007.03.029.
    [22]
    NIIYA M, UEMURA M, ZHENG XW, et al. Increased ADAMTS-13 proteolytic activity in rat hepatic stellate cells upon activation in vitro and in vivo[J]. J Thromb Haemost, 2006, 4( 5): 1063- 1070. DOI: 10.1111/j.1538-7836.2006.01893.x.
    [23]
    MANNUCCI PM, CAPOFERRI C, CANCIANI MT. Plasma levels of von Willebrand factor regulate ADAMTS-13, its major cleaving protease[J]. Br J Haematol, 2004, 126( 2): 213- 218. DOI: 10.1111/j.1365-2141.2004.05009.x.
    [24]
    LISMAN T, BONGERS TN, ADELMEIJER J, et al. Elevated levels of von Willebrand Factor in cirrhosis support platelet adhesion despite reduced functional capacity[J]. Hepatology, 2006, 44( 1): 53- 61. DOI: 10.1002/hep.21231.
    [25]
    SENZOLO M, COPPELL J, CHOLONGITAS E, et al. The effects of glycosaminoglycans on coagulation: a thromboelastographic study[J]. Blood Coagul Fibrinolysis, 2007, 18( 3): 227- 236. DOI: 10.1097/MBC.0b013e328010bd3d.
    [26]
    TRIPODI A. Detection of procoagulant imbalance. Modified endogenous thrombin potential with results expressed as ratio of values with-to-without thrombomodulin[J]. Thromb Haemost, 2017, 117( 5): 830- 836. DOI: 10.1160/TH16-10-0806.
    [27]
    KREMERS R, KLEINEGRIS MC, NINIVAGGI M, et al. Decreased prothrombin conversion and reduced thrombin inactivation explain rebalanced thrombin generation in liver cirrhosis[J]. PLoS One, 2017, 12( 5): e0177020. DOI: 10.1371/journal.pone.0177020.
    [28]
    WAN J, ROBERTS LN, HENDRIX W, et al. Whole blood thrombin generation profiles of patients with cirrhosis explored with a near patient assay[J]. J Thromb Haemost, 2020, 18( 4): 834- 843. DOI: 10.1111/jth.14751.
    [29]
    von MEIJENFELDT FA, LISMAN T. Fibrinolysis in patients with liver disease[J]. Semin Thromb Hemost, 2021, 47( 5): 601- 609. DOI: 10.1055/s-0040-1718924.
    [30]
    RIJKEN DC, KOCK EL, GUIMARãES AH, et al. Evidence for an enhanced fibrinolytic capacity in cirrhosis as measured with two different global fibrinolysis tests[J]. J Thromb Haemost, 2012, 10( 10): 2116- 2122. DOI: 10.1111/j.1538-7836.2012.04901.x.
    [31]
    PUNTER M, VOS BE, MULDER BM, et al. Poroelasticity of(bio)polymer networks during compression: theory and experiment[J]. Soft Matter, 2020, 16( 5): 1298- 1305. DOI: 10.1039/c9sm01973a.
    [32]
    DRIEVER EG, LISMAN T. Fibrin clot properties and thrombus composition in cirrhosis[J]. Res Pract Thromb Haemost, 2023, 7( 1): 100055. DOI: 10.1016/j.rpth.2023.100055.
    [33]
    HUGENHOLTZ GC, MACRAE F, ADELMEIJER J, et al. Procoagulant changes in fibrin clot structure in patients with cirrhosis are associated with oxidative modifications of fibrinogen[J]. J Thromb Haemost, 2016, 14( 5): 1054- 1066. DOI: 10.1111/jth.13278.
    [34]
    MARTINEZ J, MACDONALD KA, PALASCAK JE. The role of sialic acid in the dysfibrinogenemia associated with liver disease: distribution of sialic acid on the constituent chains[J]. Blood, 1983, 61( 6): 1196- 1202.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (725) PDF downloads(105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return