中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

常用回归模型—多重线性回归和Logistic回归及Cox回归的联系与区别

阅读次数:11124
  • 分享到:

用微信扫码二维码

分享至好友和朋友圈

发布日期:2019-08-22
来源:临床流行病学和循证医学

如何区分常见的回归模型呢?在什么情况下,应该用什么回归模型呢? 本文将汇总分析三种最常用回归模型:多重线性回归、Logistic回归、Cox回归,更直接比较它们间最基本的联系与区别。

三者联系: 

它们都属于回归分析,目的都在于探讨多个自变量对因变量的影响,且自变量具有共同属性——自变量均为多个,可以为连续变量、等级变量和分类变量,其中,分类变量需转换为哑变量进行处理,等级变量按连续变量或哑变量进行处理。

三者区别: 

1、多重线性回归:用于寻找连续性因变量数值随多个自变量变化而变化的直线趋势;强调因变量为连续变量。如研究肺癌患者某肿瘤标记物的水平(连续变量)是否受年龄、性别、吸烟与否及数量等自变量的影响。操作流程为:

2、Logistic回归:用于分析分类变量(或等级变量)和一些影响因素之间的关系,由于因变量非连续变量,与自变量间失去了线性关系的可能性,于是经过Logit变化,将模型转换为线性关系;强调因变量为分类变量或等级变量。如研究肺癌患病与否(二分类变量)是否受年龄、性别、吸烟与否及数量等自变量的影响。以二分类Logistic回归为例,操作流程为:

3、Cox回归:用于研究多个因素对结局事件的影响;因变量与二分类Logistic回归相似,唯一的区别在于Cox回归的因变量引入了时间因素。如分析肺癌生存时间(二分类变量,含时间因素)是否受年龄、性别、吸烟与否及数量等自变量的影响。操作流程为:

可见,三种常用的回归模型有着某些相同点,也由于因变量的情况不同而适用于不同的数据。

  • 分享到:

用微信扫码二维码

分享至好友和朋友圈

阅读次数:11124
  • 1 病毒性肝炎
    • 1.1 乙型肝炎
    • 1.2 丙型肝炎
    • 1.3 甲型肝炎
    • 1.4 戊型肝炎
    • 1.5 其他肝炎
  • 2 肝硬化及并发症
  • 3 酒精性肝病
  • 4 非酒精性脂肪性肝病
  • 5 肝衰竭/肝性脑病/人工肝
  • 6 肝肿瘤
  • 7 自身免疫性肝病
  • 8 药物性肝病
  • 9 肝移植
  • 10 其他肝病
    • 10.1 遗传及代谢性肝病
    • 10.2 胆汁淤积性肝病
    • 10.3 肝脏血管病
  • 11 一般肝病/肝脏检查
  • 12 胆道疾病
  • 13 胰腺疾病
  • 14 全身疾病与肝病/内镜
  • 15 肝胆胰疾病相关评分系统汇总