方差分析(Analysis of Variance,简称ANOVA),又称“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。它是以F值为统计量的计量资料的假设检验方法。检验方法是将总方差分解成两个或多个部分方差和,推断两组或多组的总体无数是否相等。
完全随机设计方差分析的应用条件:n各样本是相互独立的随机样本;n各组样本均来自正态总体;n各组的总体方差相等。另外各单元格样本含量比较大(>30)且各单元格样本含量相同的情况下,方差是否相等对结果影响几乎没有。
例题:研究某机关工作人员血脂水平,随机抽取不同年龄组男性各10名,检测他们的总胆固醇(TC)的含量(mmol/L),其结果如下:
A组 5.01 4.85 4.93 5.18 4.95 4.78 5.18 4.89 5.07 5.21
B组 5.12 5.13 4.89 5.20 4.99 5.14 5.16 4.98 5.16 5.25
C组 5.24 5.26 5.23 5.11 5.31 5.23 5.21 4.98 5.15 5.19
问题:三个年龄组的总胆固醇平均含量之间的差别是否有统计学意义?进一步两两比较结果如何?
1 录入数据,建立变量分组以及指标,见图1。
图1
2 在SPSS软件工具栏中按图示依次点击Analyze »Compare Means »One-Way ANOVA开始检验,见图2。
图2
3 Dependent List选TC,Factor选group,点击Post Hoc勾选LSD,S-N-K,Dunnett,然后continue,见图3。
图3
4 点击Options,勾选Descriptive和Homogeneity,然后continue,见图4。
图4
5 选完上面这些,就可以点击“OK”了,这时结果就出来了(图5和6),可以看到到每组的均数和标准差,得出F=5.920,P=0.007,在检验水准为0.05的水平下,差异有统计学意义,可以认为三组的TC水平不全相等。进一步两两比较显示,1(A组)和3(C组)之间TC水平差异有统计学意义,其余组间比较均无差异,见图6。
图5
图6