PI3K/Akt/mTOR signal transduction pathway and digestive system tumors
母婴传播是HBV主要的传播方式之一,也是造成HBV慢性感染的主要原因[1]。加强慢性HBV感染育龄期女性的全程管理,不仅关系到母婴的安全性和阻断HBV母婴传播,对于世界卫生组织提出的“2030年消除病毒性肝炎对公共卫生的威胁”这一目标的实现也是至关重要的。我国孕产妇HBsAg阳性率约为6.3%[2],孕期可能发生慢性乙型肝炎(CHB)活动,因此,针对此人群肝功能、HBV血清学标志物和HBV DNA等指标的监测非常重要。符合抗病毒治疗适应证孕妇应接受抗病毒治疗,产后应继续抗病毒治疗和定期随访。同时,高病毒载量慢性HBV感染孕妇孕期应抗病毒治疗以降低HBV DNA水平,阻断HBV母婴传播,产后停药并随访[3-4]。因产后免疫功能和激素水平变化,3.5%~44.7%的慢性HBV感染孕妇可出现产后肝炎活动[5-9]。慢性HBV感染孕妇无论是否接受抗病毒治疗干预,在妊娠期和产后都有一定比例的肝炎活动,甚至出现重症化倾向。因此,本文将针对慢性HBV感染孕妇产后肝炎活动的临床特征、发病机制、预测因素及治疗策略进行阐述,帮助临床医生更好地监测慢性HBV感染孕妇产后肝炎活动及治疗管理。
慢性HBV感染孕妇产后肝炎活动表现为ALT水平升高和HBV DNA波动,甚至可伴有HBeAg和HBsAg血清学转换[10-11],伴或不伴乏力及相应的消化道症状。ALT升高标准从ALT≥正常值上限(ULN)、2~5×ULN,甚至ALT≥5~10×ULN。当ALT≥10×ULN时,有发生肝功失代偿伴有胆红素明显上升、凝血机制异常等肝衰竭的风险。慢性HBV感染孕妇在产后4~6周和9~12周是发生肝炎活动的高峰期,产后绝大部分的ALT水平升高为轻到中度,但仍可发生在产后24周甚至48周。因此,慢性HBV感染孕妇在产后早期应监测HBV DNA和ALT水平变化,可能有助于发现严重肝炎风险,尽早抗病毒治疗有助于肝功能的恢复和降低肝衰竭的发生风险。
一项回顾性临床研究[12]收集慢性HBV感染孕妇分娩时及分娩后6、24、36和48周时的肝功能、HBV血清学标志物和HBV DNA等指标水平变化,并收集抗病毒治疗药物的种类和停药时间:408例慢性HBV感染孕妇妊娠期间服用抗病毒药物阻断HBV母婴传播,与未服用药物孕妇相比,分娩时的ALT、AST、HBV DNA和HBeAg水平差异均有统计学意义;慢性HBV感染孕妇分娩后6周或停药后6周为肝炎活动高发期,分娩后所有患者的ALT、AST、TBil、Alb水平在6周内均出现上升趋势;173例在产后6周内即首次出现ALT水平异常,分娩后48周内共有231例发生肝炎活动。另一项前瞻性队列研究[13]收集了417例高病毒载量慢性HBV感染孕妇(无论是否妊娠期抗病毒治疗阻断HBV母婴传播)在妊娠期及分娩后6、12、24、36和48周时的肝功能、HBV血清学标志物和HBV DNA等指标水平变化,分析慢性HBV感染孕妇在妊娠期和产后肝炎活动的临床特征。结果显示,妊娠期慢性HBV感染者无论是否抗病毒治疗,在妊娠期和产后均有一定比例的肝炎活动,产后肝炎活动率(44.6%)明显高于妊娠期(12.8%),在产后6周左右达到高峰,这可能是慢性HBV感染产妇抗病毒治疗的时机。由于98%慢性HBV感染孕妇产后肝炎活动发生在产后24周内,停药后的随访应至少在产后24周。
大部分慢性HBV感染孕妇在妊娠前处于免疫耐受期,妊娠期间肝脏疾病也相对稳定。慢性HBV感染产妇的T淋巴细胞免疫特性变化可能在打破免疫耐受方面起一定作用,激活和杀伤功能相关的指标可能有助于提示慢性HBV感染孕妇产后肝炎活动。慢性HBV感染孕妇妊娠期由于肾上腺皮质类固醇、雌激素和黄体酮的增加,导致细胞免疫受到抑制,使孕妇耐受异体胎儿。产后由于这些因素消除,慢性HBV感染孕妇产后肝炎活动。慢性HBV感染产妇外周血调节性T淋巴细胞(Treg)数量减少,自然杀伤细胞数量增多,细胞毒性增强,辅助性T淋巴细胞(Th)1/2以Th1为主,Th17/Treg以Th17为主。自然杀伤细胞可能通过非抗原特异性机制引起肝脏炎症,CD8+ T淋巴细胞数量增加,HBV特异性T淋巴细胞反应从妊娠期功能障碍中恢复。在产后炎症的背景下,产后皮质醇迅速下降,特别是HBV DNA和细胞因子诱导的HBV特异性T淋巴细胞反应增强,是产后肝炎活动的主要原因[14]。慢性HBV感染孕妇产后肝炎活动者,用流式细胞术检测分娩前后CD8+ T淋巴细胞簇的表型、功能及细胞因子。CD8+ T淋巴细胞激活被增强,特别是TEMRA亚群的激活存在显著差异,表达穿孔素和颗粒酶B的CD8+ T淋巴细胞的频率增加,Treg数量降低,CD4+ T淋巴细胞或CD8+ T淋巴细胞产生的IFN-γ与IL-10的比值高于无产后肝炎活动者[15-16]。
高病毒载量慢性HBV感染孕妇孕期抗病毒治疗阻断HBV母婴传播是否影响产后肝炎活动意见并不一致[17-19]。产后停药时HBV DNA水平相对较低同时伴有HBsAg和HBeAg降低的产妇,常发生产后肝炎活动。年龄<29岁、HBeAg<700 S/CO和HBV DNA 3~5 log10 IU/mL是慢性HBV感染孕妇产后肝炎活动的预测因素。将抗病毒治疗停药时间推迟到产后6~12周,并不能降低产后肝炎发生率[20]。产后肝炎活动恢复的时间与分娩时HBV DNA水平相关,在分娩时ALT水平升高或HBV DNA≥5 log10 IU/mL可预测慢性HBV感染孕妇产后肝炎活动[21-22]。但也有研究[23]报道,年龄、HBeAg阳性、基线HBV DNA、基线ALT、妊娠和胎次未被发现是慢性HBV感染孕妇产后肝炎活动的预测因素。无论是否孕期接受抗病毒治疗,慢性HBV感染孕妇产后均有出现ALT水平异常的风险,治疗组与未治疗组无显著差异[24]。产后即刻至产后3个月停用抗病毒药物的肝脏生化指标异常率无明显差异[25-28]。一项北美地区回顾性多种族的真实世界临床研究[29]结果显示,19%慢性HBV感染孕妇产后有肝炎活动,尤其在产后富马酸替诺福韦酯(tenofovir disoproxil fumarate,TDF)停药者,21%的产妇需要再次抗病毒治疗。未抗病毒治疗孕妇产后肝炎活动率54%,仅有1例肝衰竭产妇在产后第13个月行肝移植。HBeAg阳性孕妇产后平均17个月获得HBeAg阴转率37%,平均30个月获得HBsAg阴转率2.9%。慢性HBV感染孕妇孕期抗病毒治疗产后停药,产后12周血清HBcrAg(OR=4.52,95%CI:2.58~7.92)和HBsAg(OR=2.52,95%CI:1.13~5.65)水平与产后肝炎活动有关,可能是产后12周需要继续抗病毒治疗的预测指标[30]。另一项探讨慢性HBV感染孕妇产后肝炎活动相关因素的研究[31]发现,产后肝炎活动主要发生在分娩后4周,HBeAg阳性和妊娠糖尿病与分娩后的肝炎活动有关。因此,需要额外关注HBeAg阳性慢性HBV感染合并糖尿病孕妇产后肝炎活动。
对于妊娠期ALT水平升高的慢性HBV感染孕妇,如果妊娠或分娩时HBeAg有从基线下降的趋势,可通过延长抗病毒治疗至48周以上以提高HBeAg血清转换率。慢性HBV感染的孕妇,无论孕期是否抗病毒治疗,产后应每4~6周监测肝功能、HBV血清学标志物和HBV DNA等指标,若随访期间评估符合慢性HBV感染抗病毒治疗适应证,个体化启动抗病毒治疗方案。如果无干扰素禁忌证,以聚乙二醇干扰素为基础的治疗更有利于分娩后HBeAg或HBsAg血清清除;若产后考虑到母乳喂养,推荐口服抗病毒药物治疗,如TDF或富马酸丙酚替诺福韦(tenofovir alafenamide,TAF);在极少数情况下,产后肝炎恶化将是严重的,甚至发生肝衰竭,应积极TDF或TAF治疗[32-33]。
慢性HBV感染孕妇孕期抗病毒治疗HBV DNA和HBeAg水平下降显著,产后继续抗病毒治疗,HBsAg和HBeAg水平下降更快,能够获得较高的HBeAg清除和血清学转换,部分患者可获得HBsAg清除[8,34-35]。一项北京佑安医院慢性HBV感染孕妇孕期抗病毒治疗研究[36]显示,在产后6周未停药状态下,对30例ALT≥2×ULN同时HBV DNA较基线下降≥2 1og10 IU/mL或/和HBeAg下降≥20%者采用干扰素为基础的联合治疗,病毒学应答率93.3%、HBeAg清除率56.7%和HBsAg的清除率26.7%。一项HBeAg阴性慢性HBV感染产妇应用聚乙二醇干扰素治疗48周的有效性和安全性研究[37]中,HBsAg阴转率和血清转换率分别为51.06%和40.43%。基线HBsAg水平、第24周HBsAg水平和产后肝炎活动与聚乙二醇干扰素治疗48周HBsAg阴转显著相关,无严重不良事件报告。因此,在HBeAg阴性慢性HBV感染产妇中,聚乙二醇干扰素治疗可以实现高比例的临床治愈,具有可靠的安全性,特别是对于经历产后肝炎活动和基线HBsAg水平较低的患者。
综上所述,慢性HBV感染孕妇是特殊人群,无论孕妇是否采用抗病毒治疗阻断HBV母婴传播,产后均有一定比例的肝炎活动,甚至重症化,需要密切随访。有产后肝炎活动者可采用口服TDF或TAF抗病毒治疗,或以聚乙二醇干扰素为基础的治疗,可达到更高的治疗目标。
[1]Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism[J]. Cell, 2006, 124 (2) ∶ 471-484.
|
[2]OldhamS, Montagne J, Radimerski T, et al.Genetic and biochemi-cal characterization of dTOR, the Drosophila homolog of the target ofrapamycin[J].Genes Dev, 2000, 14 (4) ∶2689-2694.
|
[3]Fingar DC, Salama S, Tsou C, et al.Mammalian cell size is con-trolled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E[J].Genes Dev, 2002, 16 (12) ∶1472-1487.
|
[4]Gingras AC, Raught B, Sonenberg N.mTOR signaling to translation[J]. Curr Top Microbiol Immunol, 2004, 279∶ 169-197.
|
[5]Hay N, Sonenberg N. Upstream and downstream of mTOR[J]. Genes Dev, 2004, 18 (16) ∶ 1926-1945.
|
[6]Tsang C K, Zheng X F. TOR-in (g) the nucleus[J]. Cell Cycle, 2007, 6 (1) ∶25-29.
|
[7]Guertin D A, Sabatini D M. An expanding role for mTOR in cancer[J]. Trends Mol Med, 2005, 11 (8) ∶ 353-361.
|
[8]Schmelzle T, Hall MN.TOR, a central controller of cell growth[J]. Cell, 2000, 103 (2) ∶253-262.
|
[9]Kim S, Wong P, Coulombe PA.A keratin cytoskeletal protein regu-lates protein synthesis and epithelial cell growth[J].Nature, 2006, 441 (7091) ∶362-365.
|
[10]Huang S, Houghton PJ.Targeting mTOR signaling for cancer therapy[J]. Curr Opin Pharmacol, 2003, 3 (4) ∶371-377.
|
[11]Vignot S, Faivre S, Aguirre D, et al.mTOR-targeted therapy of cancer with rapamycin derivatives[J]. Ann Oncol, 2005, 16 (4) ∶525-537.
|
[12]Abraham RT. Identification of TOR signaling complexes:more TORC for the cell growth engine[J]. Cell, 2002, 111 (1) ∶9-12.
|
[13]Gingras AC, Raught B, Sonenberg N, et al.Regulation of translation ini-tiation by FRAP/mTOR[J].Genes Dev, 2001, 15 (7) ∶807-826.
|
[14]Jacinto E, Hall MN.TOR signaling in bugs, brain and brawn[J]. Nat Rev Mol Cell Biol, 2003, 4 (2) ∶117-126.
|
[15]Katso R, Okkenhaug K, Ahmadi K, et al.Cellular function of phos-phoinositide 3-kinases:implications for development, homeostasis, andcancer[J].Annu Rev Cell Dev Biol, 2001, 17 (4) ∶615-675.
|
[16]Aoki M, Batista O, Bellacosa A, et al.The Akt kinase:molecular de-terminants of oncogenicity[J].Proc Natl Acad Sci US A, 1998, 95 (3) ∶14950-14955.
|
[17]Cantrell DA.Phosphoinositide 3-kinase signalling pathways[J]. J Cell Sci, 2001, 114 (6) ∶1439-1445.
|
[18]Samuels Y, Diaz LA, Sehlnidt-Kittler O, et al.Mutant PIK3CApromotes cell growth and invasion of human cancer cells[J].Canc-er Cell, 2005, 7 (2) ∶561-573.
|
[19]Lee JW, Soung YH, Kim SY, et al.PIK3CAgene is frequently muta-ted in breast carcinomas and hepatocellular carcinomas[J].Onco-gene, 2005, 24 (4) ∶1477-1480.
|
[20]Hartmann C, Bartel G, Gehlhaar C, et al.PIK3CAmutations in glio-blastoma multiforme[J].Acta Neuropathol, 2005, 109 (5) ∶639-642.
|
[21]Levine DA, Bogomolniy F, Yee CJ, et al.Frequent mutation of the PIK3CA gene in ovarian and breast cancers[J]. Clin Cancer Res, 2005, 11 (2) ∶2875-2878.
|
[22]Bader AG, Kang S, Vogt PK.Cancer-specific mutations in PIK3CA are oncogenic in vivo[J]. Proc Natl Acad Sci U S A, 2006, 103 (2) ∶1475-1479.
|
[23]Carson JD, Van Aller G, Lehr R, et al.Effects of oncogenic P110 al-pha subunit mutations on the lipid kinase activity of phosphoinosit-ide3-kinase[J].Biochem J, 2008, 409 (6) ∶519-524.
|
[24]Fingar DC, Richardson CJ, Tee AR, et al.mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/Eukaryotic translation initiation factor 4E[J]. Mol Cell Biol, 2004, 24 (1) ∶200-216.
|
[25]Hay N, Sonenberg N.Upstream and downstream of mTOR[J]. Genes Dev, 2004, 18 (2) ∶1926-1945.
|
[26]Gingras AC, Raught B, Sonenberg N, et al.Regulation of transla-tion initiation by FRAP/mTOR[J].Genes Dev, 2001, 15 (7) ∶807-826.
|
[27]Fingar DC, Blenis J.Target of rapamycin (TOR) : an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression[J]. Oncogene, 2004, 23 (18) ∶ 3151-3171.
|
[28]Proud CG.Regulation of mammalian translation factors by nutrients[J]. Eur J Biochem, 2002, 269 (8) ∶5338-5349.
|
[29]Hay N, Sonenberg N.Upstream and downstream of mTOR[J]. Genes Dev, 2004, 18 (5) ∶1926-1945.
|
[30]Wullschleger S, Loewith R, Hall MN.TOR signaling in growth and metabolism[J]. Cell, 2006, 124 (7) ∶471-484.
|
[31]Eguchi S, Tokunaga C, Hidayat S, et al.Different roles for the TOSand RAIP motifs of the translation regulator protein 4E-BP1 in theassociation with raptor and phosphorylation by mTOR in the regula-tion of cell size[J].Genes Cells, 2006, 11 (1) ∶757-766.
|
[32]Rebholz H, Panasyuk G, Fenton T, et al.Receptor association and tyrosine phosphorylation of S6 kinases[J]. FEBS J, 2006, 273 (2) ∶2023-2036.
|
[33]Phin S, Kupferwasser D, Lam J, et al.Mutational analysis of riboso-mal S6 kinase 2 shows differential regulation of its kinase activityfrom that of ribosomal S6 kinase 1[J].Biochem J, 2003, 373 (3) ∶583-591.
|
[34]Pene F, Claessens YE, Muller O, et al.Role of the phosphatidyli-nositol 3-kinase/Akt and mTOR/P70S6-kinase pathways in theproliferation and apoptosis in multiple myeloma[J].Oncogene, 2002, 21 (6) ∶6587-6597.
|
[35]Hay N, Sonenberg N.Upstream and downstream of mTOR[J]. Genes Dev, 2004, 18 (16) ∶1926-1945.
|
[36]Fingar DC, Blenis J. Target of rapamycin (TOR) : an integrator of nutrient and growth factorsignals and coordinator of cell growth and cell cycle progression[J]. Oncogene, 2004, 23 (18) ∶ 3151-3171.
|
[37]Suzuki Y, Toquenaga Y. Effects of information and group structure on evolution of altruism: analysis of two-score model by covariance and contextual analyses[J]. J Theor Bio l, 2005, 232 (2) ∶ 191-201.
|
[38]Zhang H, Bajraszewski N, Wu E, et al. PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR[J]. J Clin Invest, 2007, 117 (3) ∶ 730-738.
|
[39]Panner A, James CD, Berger MS, et al. mTOR controls FLIPS translation and TRAIL sensitivity in glioblastoma multiforme cells[J]. Mol Cell Bio l, 2005, 25 (20) ∶ 8809-8823.
|
[40]Herberser B, Puhalla H, Lehnert M, et al.Activated manunalian tar-get of Rapamycin is an adverse prognostie factor in patients with bil-iary tract adenocarcinoma[J].Clin Cancer Res, 2007, 13 (16) ∶4795-4799.
|
[41]Law BK.Rapamycin:an anti-cancer immunosuppressant?[J]. Crit Rev Oncol Hematol, 2005, 56 (l) ∶47-60.
|
[42]Suzuki Y, Toquenaga Y. Effects of information and group structure on evolution of altruism:analysis of two-score model by covariance and contextual analyses[J]. J Theor Biol, 2005, 232 (2) ∶191-201.
|
[43]Shaw RJ, Bardeesy N, Manning BD, et al.The LKBl tumor suppres-sor negatively regulates MTOR signaling[J].Cancer Cell, 2004, 6 (l) ∶91-99.
|
[44]Jimeno A, Kulesaza P, Cusatis G, et al.Pharmacodynamic-guided, modified continuous reassessment method (mCRM) -based, dose finding study of rapamycin in adults patientswith solid tumors[J]. ProcAm Soc Clin Onco l, 2006, 24 (4) ∶ 125.
|
[45]Sharon BC, Penelope M, Alexander M, et al.Rapamycin inhibits proliferation of estrogen-receptor-positive breast cancer cells[J]. J SurgRes, 2007, 138 (3) ∶ 37-44.
|
[46]Amato RJ, Misellati A, Khan M, et al. A phase II trial of RAD001 in patients with metastatic renal cell carcinoma[J]. J Clin Oncol, 2006, 24 (A4530) ∶ 18.
|
[47]Mita MM, Rowinsky EK, Goldston ML, et al.Phase I, pharmacoki-netic (PK) , and pharmacodynamic (PD) study of AP23573, anmTOR inhibitor, administered IV daily X 5 every other week in pa-tients (pts) with refractory or advanced malignancies[J].Clin On-col, 2004, 30 (3) ∶76.
|