[1] |
SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
|
[2] |
SAJID M, LIU L, SUN C. The dynamic role of NK cells in liver cancers: role in HCC and HBV associated HCC and its therapeutic implications[J]. Front Immunol, 2022, 13: 887186. DOI: 10.3389/fimmu.2022.887186.
|
[3] |
LI J, TAO L, WANG X. Cytotoxic immune cell-based immunotherapy for hepatocellular carcinoma[J]. Hepatoma Research, 2020, 6: 15. DOI: 10.20517/2394-5079.2019.34.
|
[4] |
MARQUARDT N, BÉZIAT V, NYSTRÖM S, et al. Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells[J]. J Immunol, 2015, 194(6): 2467-2471. DOI: 10.4049/jimmunol.1402756.
|
[5] |
MICHEL T, OLLERT M, ZIMMER J. A hot topic: Cancer immunotherapy and natural killer cells[J]. Int J Mol Sci, 2022, 23(2): 797. DOI: 10.3390/ijms23020797.
|
[6] |
KALATHIL SG, THANAVALA Y. Natural killer cells and T cells in hepatocellular carcinoma and viral hepatitis: Current status and perspectives for future immunotherapeutic approaches[J]. Cells, 2021, 10(6). DOI: 10.3390/cells10061332.
|
[7] |
LIU P, CHEN L, ZHANG H. Natural killer cells in liver disease and hepatocellular carcinoma and the NK cell-based immunotherapy[J]. J Immunol Res, 2018, 2018: 1206737. DOI: 10.1155/2018/1206737.
|
[8] |
POZNANSKI SM, SINGH K, RITCHIE TM, et al. Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment[J]. Cell Metab, 2021, 33(6): 1205-1220. e5. DOI: 10.1016/j.cmet.2021.03.023.
|
[9] |
OURA K, MORISHITA A, TANI J, et al. Tumor immune microenvironment and immunosuppressive therapy in hepatocellular carcinoma: a review[J]. Int J Mol Sci, 2021, 22(11): 5801. DOI: 10.3390/ijms22115801.
|
[10] |
MIKULAK J, BRUNI E, ORIOLO F, et al. Hepatic natural killer cells: Organ-specific sentinels of liver immune homeostasis and physiopathology[J]. Front Immunol, 2019, 10: 946. DOI: 10.3389/fimmu.2019.00946.
|
[11] |
PESCE S, GREPPI M, TABELLINI G, et al. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: A phenotypic and functional characterization[J]. J Allergy Clin Immunol, 2017, 139(1): 335-346. e3. DOI: 10.1016/j.jaci.2016.04.025.
|
[12] |
WONG J, KWOK G, TANG V, et al. Ipilimumab and nivolumab/pembrolizumab in advanced hepatocellular carcinoma refractory to prior immune checkpoint inhibitors[J]. J Immunother Cancer, 2021, 9(2): e001945. DOI: 10.1136/jitc-2020-001945.
|
[13] |
LIN M, LUO H, LIANG S, et al. Pembrolizumab plus allogeneic NK cells in advanced non-small cell lung cancer patients[J]. J Clin Invest, 2020, 130(5): 2560-2569. DOI: 10.1172/JCI132712.
|
[14] |
BARRUETO L, CAMINERO F, CASH L, et al. Resistance to checkpoint inhibition in cancer immunotherapy[J]. Transl Oncol, 2020, 13(3): 100738. DOI: 10.1016/j.tranon.2019.12.010.
|
[15] |
TAN S, XU Y, WANG Z, et al. Tim-3 hampers tumor surveillance of liver-resident and conventional NK cells by disrupting PI3K signaling[J]. Cancer Res, 2020, 80(5): 1130-1142. DOI: 10.1158/0008-5472.CAN-19-2332.
|
[16] |
DEUSS FA, WATSON GM, FU Z, et al. Structural basis for CD96 immune receptor recognition of nectin-like protein-5, CD155[J]. Structure, 2019, 27(2): 219-228. e3. DOI: 10.1016/j.str.2018.10.023.
|
[17] |
STAMM H, OLIVEIRA-FERRER L, GROSSJOHANN EM, et al. Targeting the TIGIT-PVR immune checkpoint axis as novel therapeutic option in breast cancer[J]. Oncoimmunology, 2019, 8(12): e1674605. DOI: 10.1080/2162402X.2019.1674605.
|
[18] |
SUN H, HUANG Q, HUANG M, et al. Human CD96 correlates to natural killer cell exhaustion and predicts the prognosis of human hepatocellular carcinoma[J]. Hepatology, 2019, 70(1): 168-183. DOI: 10.1002/hep.30347.
|
[19] |
AHN M, NIU J, KIM D, et al. Vibostolimab, an anti-TIGIT antibody, as monotherapy and in combination with pembrolizumab in anti-PD-1/PD-L1-refractory NSCLC[J]. Ann Oncol, 2020, 31: S887. DOI: 10.1016/j.annonc.2020.08.1714.
|
[20] |
BLAKE SJ, DOUGALL WC, MILES JJ, et al. Molecular pathways: Targeting CD96 and TIGIT for cancer immunotherapy[J]. Clin Cancer Res, 2016, 22(21): 5183-5188. DOI: 10.1158/1078-0432.CCR-16-0933.
|
[21] |
BUCKLE I, GUILLEREY C. Inhibitory receptors and immune checkpoints regulating natural killer cell responses to cancer[J]. Cancers (Basel), 2021, 13(17): 4263. DOI: 10.3390/cancers13174263.
|
[22] |
KOHRT HE, THIELENS A, MARABELLE A, et al. Anti-KIR antibody enhancement of anti-lymphoma activity of natural killer cells as monotherapy and in combination with anti-CD20 antibodies[J]. Blood, 2014, 123(5): 678-686. DOI: 10.1182/blood-2013-08-519199.
|
[23] |
ZHANG J, BASHER F, WU JD. NKG2D ligands in tumor immunity: two sides of a coin[J]. Front Immunol, 2015, 6: 97. DOI: 10.3389/fimmu.2015.00097.
|
[24] |
OLIVIERO B, VARCHETTA S, MELE D, et al. MICA/B-targeted antibody promotes NK cell-driven tumor immunity in patients with intrahepatic cholangiocarcinoma[J]. Oncoimmunology, 2022, 11(1): 2035919. DOI: 10.1080/2162402X.2022.2035919.
|
[25] |
FERRARI DE ANDRADE L, TAY RE, PAN D, et al. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity[J]. Science, 2018, 359(6383): 1537-1542. DOI: 10.1126/science.aao0505.
|
[26] |
FELICES M, LENVIK TR, DAVIS ZB, et al. Generation of biKEs and triKEs to improve NK cell-Mediated targeting of tumor cells[J]. Methods Mol Biol, 2016, 1441: 333-346. DOI: 10.1007/978-1-4939-3684-7_28.
|
[27] |
van FAASSEN H, JO D, RYAN S, et al. Incorporation of a novel CD16-specific single-domain antibody into multispecific natural killer cell engagers with potent ADCC[J]. Mol Pharmaceut, 2021, 18(6): 2375-2384. DOI: 10.1021/acs.molpharmaceut.1c00208.
|
[28] |
ABEL AM, YANG C, THAKAR MS, et al. Natural killer cells: development, maturation, and clinical utilization[J]. Front Immunol, 2018, 9: 1869. DOI: 10.3389/fimmu.2018.01869.
|
[29] |
MADDINENI S, SILBERSTEIN JL, SUNWOO JB. Emerging NK cell therapies for cancer and the promise of next generation engineering of iPSC-derived NK cells[J]. J Immunother Cancer, 2022, 10(9): e004693. DOI: 10.1136/jitc-2022-004693.
|
[30] |
KLINGEMANN H, BOISSEL L, TONEGUZZO F. Natural killer cells for immunotherapy-advantages of the NK-92 cell line over blood NK cells[J]. Front Immunol, 2016, 7: 91. DOI: 10.3389/fimmu.2016.00091.
|
[31] |
BERGMAN H, LINDQVIST C. Human IL-15 inhibits NK cells specific for human NK-92 cells[J]. Anticancer Res, 2021, 41(7): 3281-3285. DOI: 10.21873/anticanres.15114.
|
[32] |
DAI K, WU Y, SHE S, et al. Advancement of chimeric antigen receptor-natural killer cells targeting hepatocellular carcinoma[J]. World J Gastrointest Oncol, 2021, 13(12): 2029-2037. DOI: 10.4251/wjgo.v13.i12.2029.
|
[33] |
DAHER M, MELO GARCIA L, LI Y, et al. CAR-NK cells: the next wave of cellular therapy for cancer[J]. Clin Transl Immunology, 2021, 10(4): e1274. DOI: 10.1002/cti2.1274.
|
[34] |
YU M, LUO H, FAN M, et al. Development of GPC3-specific chimeric antigen receptor-engineered natural killer cells for the treatment of hepatocellular carcinoma[J]. Mol Ther, 2018, 26(2): 366-378. DOI: 10.1016/j.ymthe.2017.12.012.
|
[35] |
ZHAO J, LIN L, LUO Y, et al. Optimization of GPC3-specific chimeric antigen receptor structure and its effect on killing hepatocellular carcinoma cells[J]. Bioengineered, 2021, 12(1): 3674-3683. DOI: 10.1080/21655979.2021.1950261.
|
[36] |
TSENG HC, XIONG W, BADETI S, et al. Efficacy of anti-CD147 chimeric antigen receptors targeting hepatocellular carcinoma[J]. Nat Commun, 2020, 11(1): 4810. DOI: 10.1038/s41467-020-18444-2.
|
[37] |
ZHU H, BLUM RH, BERNAREGGI D, et al. Metabolic reprograming via deletion of CISH in Human iPSC-Derived NK cells promotes in vivo persistence and enhances anti-tumor activity[J]. Cell Stem Cell, 2020, 27(2): 224-237. e6. DOI: 10.1016/j.stem.2020.05.008.
|
[38] |
NAEIMI KARAROUDI M, NAGAI Y, ELMAS E, et al. CD38 deletion of human primary NK cells eliminates daratumumab-induced fratricide and boosts their effector activity[J]. Blood, 2020, 136(21): 2416-2427. DOI: 10.1182/blood.2020006200.
|
[39] |
ALLAN D, CHAKRABORTY M, WALLER GC, et al. Systematic improvements in lentiviral transduction of primary human natural killer cells undergoing ex vivo expansion[J]. Mol Ther Methods Clin Dev, 2021, 20: 559-571. DOI: 10.1016/j.omtm.2021.01.008.
|
[40] |
FERNANDEZ JP, LUDDY KA, HARMON C, et al. Hepatic tumor microenvironments and effects on NK cell phenotype and function[J]. Int J Mol Sci, 2019, 20(17): 4131. DOI: 10.3390/ijms20174131.
|
[41] |
ZHUANG L, FULTON RJ, RETTMAN P, et al. Activity of IL-12/15/18 primed natural killer cells against hepatocellular carcinoma[J]. Hepatol Int, 2019, 13(1): 75-83. DOI: 10.1007/s12072-018-9909-3.
|
[42] |
ZHENG X, QIAN Y, FU B, et al. Mitochondrial fragmentation limits NK cell-based tumor immunosurveillance[J]. Nat Immunol, 2019, 20(12): 1656-1667. DOI: 10.1038/s41590-019-0511-1.
|
[43] |
YANG Y, LUNDQVIST A. Immunomodulatory effects of IL-2 and IL-15; Implications for cancer immunotherapy[J]. Cancers (Basel), 2020, 12(12): 3586. DOI: 10.3390/cancers12123586.
|
[44] |
MASKALENKO NA, ZHIGAREV D, CAMPBELL KS. Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders[J]. Nat Rev Drug Discov, 2022, 21(8): 559-577. DOI: 10.1038/s41573-022-00413-7.
|