中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

Association between microRNA-155/SH2-containing inositol phosphatase-1 and cardiovascular events in patients with nonalcoholic fatty liver disease

DOI: 10.3969/j.issn.1001-5256.2020.06.027
Research funding:

 

  • Published Date: 2020-06-20
  • Objective To investigate the association between microRNA-155( miR-155)/SH2-containing inositol phosphatase-1( SHIP-1) and cardiovascular events in patients with nonalcoholic fatty liver disease( NAFLD). Methods A total of 104 patients with NAFLD who were admitted to our hospital from March 2018 to July 2019 were enrolled as NAFLD group,and 110 healthy volunteers who underwent physical examination in our hospital during the same period of time were enrolled as control group. Related indices were measured,including body mass index( BMI),blood pressure,fasting plasma glucose( FPG),total cholesterol( TC),triglyceride( TG),low-density lipoprotein cholesterol( LDL-C),high-density lipoprotein cholesterol( HDL-C),alanine aminotransferase( ALT),aspartate aminotransferase( AST),gamma-glutamyl transpeptidase( GGT),and total bilirubin( TBil),and quantitative real-time PCR was used to measure the mRNA expression of miR-155 and SHIP-1 in peripheral blood. The t-test was used for comparison of continuous data between two groups,the chi-square test was used for comparison of categorical data between two groups,and the Kruskal-Wallis H test was used for comparison of ranked data between groups. A Pearson correlation analysis was performed,and the receiver operating characteristic( ROC) curve was used to investigate the value of miR-155/SHIP-1 ratio in predicting cardiovascular events. Results Compared with the control group,the NAFLD group had significantly higher levels of BMI,FPG,TC,TG,LDL-C,ALT,AST,GGT,and TBil and a significantly lower level of HDL-C,as well as significantly higher relative mRNA expression of miR-155,significantly lower relative mRNA expression of SHIP-1,and a significantly higher incidence rate of cardiovascular events( t = 6. 617,9. 323,6. 668,8. 633,4. 285,22. 099,24. 093,20. 438,12. 366,6. 515,18. 893,18. 411,and 29. 967,χ2= 10. 476,all P < 0. 01). The patients were divided into three groups according to miR-155/SHIP-1 ratio,there were significant differences between the three groups in BMI,FPG,TC,TG,LDL-C,HDL-C,ALT,AST,GGT,TBil,and incidence rate of cardiovascular events( H = 20. 923,7. 936,6. 256,16. 181,21. 572,8. 435,18. 912,22. 869,7. 665,18. 657,and 9. 701,all P < 0. 05). The miR-155/SHIP-1 ratio was significantly correlated with BMI,FPG,TC,TG,LDL-C,HDL-C,ALT,AST,GGT,and TBil( r = 0. 297,0. 317,0. 332,0. 327,0. 286,-0. 279,0. 334,0. 352,0. 342,and 0. 350,all P < 0. 001). The patients with cardiovascular events had a significantly higher miR-155/SHIP-1 ratio than those without cardiovascular events( 3. 642 ± 1. 082 vs 2. 237 ± 0. 703,t = 11. 104,P < 0. 05),and the miR-155/SHIP-1 ratio had an area under the ROC curve of 0. 902 in predicting cardiovascular events in patients with NAFLD. Conclusion Abnormal glycolipid metabolism and liver function in patients with NAFLD are closely associated with the expression of miR-155/SHIP-1,and miR-155/SHIP-1 ratio has a certain value in predicting cardiovascular events in patients with NAFLD.

     

  • [1] SWEET PH,KHOO T,NGUYEN S. Nonalcoholic fatty liver disease[J]. Prim Care,2017,44(4):599-607.
    [2] WILD SH,WALKER JJ,MORLING JR,et al. Cardiovascular disease,cancer,and mortality among people with type 2 diabetes and alcoholic or nonalcoholic fatty liver disease hospital admission[J]. Diabetes Care,2018,41(2):341-347.
    [3] FRANCQUE SM,van der GRAAFF D,KWANTEN WJ. Nonalcoholic fatty liver disease and cardiovascular risk:Pathophysiological mechanisms and implications[J]. J Hepatol,2016,65(2):425-443.
    [4] BREA A,PUZO J. Non-alcoholic fatty liver disease and cardiovascular risk[J]. Int J Cardiol,2013,167(4):1109-1117.
    [5] TRIVEDI I,RINELLA ME. NAFLD and cardiovascular disease:Can the real association be determined?[J]. Curr Hepatol Rep,2014,13(2):130-141.
    [6] LISA W,SLACK FJ. miR-155 as a novel clinical target for hematological malignancies[J]. Carcinogenesis,2020,41(1):2-7.
    [7] SCHWIMMER JB,BEHLING C,ANGELES JE,et al. Magnetic resonance elastography measured shear stiffness as a biomarker of fibrosis in pediatric nonalcoholic fatty liver disease[J].Hepatology,2017,66(5):1474-1485.
    [8] National Workshop on Fatty Liver and Alcoholic Liver Disease,Chinese Society of Hepatology,Chinese Medical Association.Guidelines for diagnosis and treatment of nonalcoholic fatty liver disease[J]. J Clin Hepatol,2010,26(2):120-124.(in Chinese)中华医学会肝病学分会脂肪肝和酒精性肝病学组.非酒精性脂肪性肝病诊疗指南[J].临床肝胆病杂志,2010,26(2):120-124.
    [9] HUDERT CA,TZSCHTZSCH H,GUO J,et al. US time-harmonic elastography:Detection of liver fibrosis in adolescents with extreme obesity with nonalcoholic fatty liver disease[J].Radiology,2018,288(1):99-106.
    [10] PISETTA C,PELIZZARI G,PIGOZZI MG,et al. Non-alcoholic fatty liver disease and cardiovascular risk[J]. J Hypertens,2019,37:e304.
    [11] MORELLO E,SUTTI S,FOGLIA B,et al. Hypoxia-inducible factor 2αdrives nonalcoholic fatty liver progression by triggering hepatocyte release of histidine-rich glycoprotein[J].Hepatology,2018,67(6):2196-2214.
    [12] TARGHER G,DAY CP,BONORA E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease[J].New Engl J Med,2010,363(14):1341-1350.
    [13] SU L,ZHANG YW,WANG Z. Proliferation inhibition and proapoptotic effects of shikonin on human leukemia MV4-11 cells[J]. J Jilin Univ(Med Edit),2020,46(1):96-101.(in Chinese)苏龙,张云蔚,王卓.紫草素对人白血病MV4-11细胞的增殖抑制和促凋亡作用[J].吉林大学学报(医学版),2020,46(1):96-101.
    [14] ZHANG L,GAO XF,WANG YH. The expression of chemerin and the influence of sitagliptin on its expression in non-alcoholic fatty liver disease rats complicated with prediabetes[J].Natl Med J China,2018,98(30):2407-2413.(in Chinese)张莉,高旭峰,王玉环.非酒精性脂肪肝并糖尿病前期chemerin表达及西格列汀对其表达的影响[J].中华医学杂志,2018,98(30):2407-2413.
    [15] STOKES CS,LAMMERT F,KRAWCZYK M. Short-term dietary interventions for the management of nonalcoholic fatty liver[J]. Curr Med Chem,2019,26(19):3483-3496.
    [16] HU MQ,XU YQ,ZHANG T,et al. Research advances in noninvasive diagnostic methods for nonalcoholic steatohepatitis[J]. J Clin Hepatol,2017,33(12):2288-2291.(in Chinese)胡梦琪,徐有青,张涛,等.非酒精性脂肪性肝炎的无创诊断方法[J].临床肝胆病杂志,2017,33(12):2288-2291.
    [17] ESTES C,RAZAVI H,LOOMBA R,et al. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease[J]. Hepatology,2018,67(1):123-133.
    [18] YOUNOSSI ZM. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis:Implications for liver transplantation[J].Liver Transpl,2018,24(2):166-170.
    [19] CHEN B,LIN HX. Intervention of polyene phosphatidylcholine on mice with nonalcoholic fatty liver disease and its effect on hepatic zinc finger protein A20 expression[J]. Chin J Clin Pharmacol Ther,2018,34(11):1353-1356.(in Chinese)陈彬,林海雪.多烯磷脂酰胆碱对非酒精性脂肪肝小鼠的干预及其对肝锌指蛋白A20表达的影响[J].中国临床药理学杂志,2018,34(11):1353-1356.
    [20] DING J,ZHANG B,WANG PJ,et al. Analysis on mechanisms and medication rules of herbal prescriptions for nonalcoholic fatty liver disease based on methods of data mining and biological information[J]. China J Chin Mater Med,2019,44(8):1689-1695.(in Chinese)丁静,张斌,王培劫,等.基于数据挖掘和生物信息分析探讨非酒精性脂肪肝用药规律及作用机制[J].中国中药杂志,2019,44(8):1689-1695.
  • Relative Articles

    [1]Juyi LI, Yingqun NI, Yuanyuan ZHANG, Huaizhen LIU. Diagnostic value of miR-128-3p, SIRT1, and AMPK in patients with type 2 diabetes mellitus comorbid with nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2025, 41(3): 453-460. doi: 10.12449/JCH250310
    [2]Lili GAO, Yong WANG, Huafang YAN, Xiaoliang WANG, Yunfeng WANG. Characteristics of cardiometabolic risk in patients with different subtypes of non-alcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2025, 41(1): 63-68. doi: 10.12449/JCH250110
    [3]Xiaodong ZHOU, Na TIAN, Minghua ZHENG. Excerpt of an international multidisciplinary consensus statement on MAFLD and the risk of CVD (2023)[J]. Journal of Clinical Hepatology, 2023, 39(10): 2336-2339. doi: 10.3969/j.issn.1001-5256.2023.10.010
    [4]Dongna ZHAO, Qian LIU, Huijie LIANG, Haozhe CUI, Lingqun MENG, Huiliang E, Liying CAO. Effect of ideal cardiovascular health metrics on the incidence rate of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2022, 38(1): 124-128. doi: 10.3969/j.issn.1001-5256.2022.01.019
    [5]Nengyuan LU, Jiahui WANG, Fangfei ZHONG, Lei WANG, Yue PENG, Tiejian ZHAO, Yang ZHENG. Role of microRNA-125b in the development and progression of various chronic liver diseases[J]. Journal of Clinical Hepatology, 2021, 37(3): 725-728. doi: 10.3969/j.issn.1001-5256.2021.03.046
    [6]Zeshan CHEN, Bin WEN, Peirong QIU, Hongni LAN, Baote HUANG, Xin DENG. Role of microRNA-122 in the development, progression, and diagnosis of liver disease[J]. Journal of Clinical Hepatology, 2021, 37(7): 1724-1728. doi: 10.3969/j.issn.1001-5256.2021.07.052
    [7]Mengqiang CAI, Sutong LIU, Junying LIU, Lihui ZHANG, Wenxia ZHAO. The role of microRNA in autoimmune liver diseases[J]. Journal of Clinical Hepatology, 2021, 37(1): 212-215. doi: 10.3969/j.issn.1001-5256.2021.01.047
    [8]Yajie YUAN, Haojie DING, Qingming KONG. Role of microRNA-335 in chronic liver diseases[J]. Journal of Clinical Hepatology, 2021, 37(2): 471-474. doi: 10.3969/j.issn.1001-5256.2021.02.047
    [9]Xinyu AN, Lingxi HU, Jie QIAO, Rongqi WANG, Yuemin NAN. Role of microRNAs in the development and progression of nonalcoholic steatohepatitis[J]. Journal of Clinical Hepatology, 2021, 37(12): 2963-2966. doi: 10.3969/j.issn.1001-5256.2021.12.048
    [10]Shengnan DU, Jingjing GAO, Tao WANG, Yuanye JIANG, Qin CAO. Value of circular RNA in the diagnosis and treatment of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2021, 37(11): 2684-2688. doi: 10.3969/j.issn.1001-5256.2021.11.043
    [11]Zhihua ZUO, Chuyi ZENG, Yao JIANG, Hualin TAO, Yongcan GUO. Regulatory role of long non-coding RNAs in the development and progression of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2021, 37(7): 1704-1707. doi: 10.3969/j.issn.1001-5256.2021.07.048
    [12]Luying ZHU, Yuchen LI, Lihua DENG, Jingtong WANG. Research advances in extrahepatic diseases associated with nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2021, 37(9): 2215-2219. doi: 10.3969/j.issn.1001-5256.2021.09.043
    [13]Xuemei DING, Shilun WU, Wenbing SUN. Value of preoperative microRNA-192 in peripheral blood mononuclear cells in predicting microvascular invasion of solitary hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2021, 37(5): 1121-1125. doi: 10.3969/j.issn.1001-5256.2021.05.028
    [14]Liu LiLi, Su HeLing, Liu YongMing. Role of microRNA in hepatitis B virus infection-related diseases[J]. Journal of Clinical Hepatology, 2020, 36(3): 662-665. doi: 10.3969/j.issn.1001-5256.2020.03.041
    [15]Cui HaiXia, Jin ChunMei, Wu ZhengXie, Jin AiHua, Zhang MeiLan. Correlation of miRNA-181c expression in peripheral blood mononuclear cells with interferon-γ,chemokine( C-X-C motif) ligand 10,and Toll-like receptor 4 in children with autoimmune hepatitis[J]. Journal of Clinical Hepatology, 2020, 36(10): 2236-2240. doi: 10.3969/j.issn.1001-5256.2020.10.015
    [16]WANG Xin, HU YiYang, LIU Ping, FENG Qin. Association between hypertension and nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2020, 36(11): 2584-2588. doi: 10.3969/j.issn.1001-5256.2020.11.042
    [17]Mai JingYin, Chen TianYang, Cheng Yang. Changes in microRNA expression profile in the liver of mice with nonalcoholic fatty liver disease induced by high-fat diet[J]. Journal of Clinical Hepatology, 2017, 33(12): 2372-2375. doi: 10.3969/j.issn.1001-5256.2017.12.023
    [18]Zhang LiFen, Yu HongYu. Role of circulating microRNAs in development and progression of liver fibrosis[J]. Journal of Clinical Hepatology, 2016, 32(10): 2001-2003. doi: 10.3969/j.issn.1001-5256.2016.10.042
    [19]Li Qiang, Zhuo QiBin, Chen Liang, Huang YuXian. Research advances in association between non- alcoholic fatty liver disease and cardiovascular disease[J]. Journal of Clinical Hepatology, 2015, 31(7): 1046-1049. doi: 10.3969/j.issn.1001-5256.2015.07.012
    [20]Qu YaChao, LYU Jun. Research progress in serum microRNA detection for diagnosis of hepatocellular carcinoma [J]. Journal of Clinical Hepatology, 2014, 30(3): 228-232. doi: 10.3969/j.issn.1001-5256.2014.03.008
  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 2.9 %FULLTEXT: 2.9 %META: 94.8 %META: 94.8 %PDF: 2.3 %PDF: 2.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.4 %其他: 8.4 %其他: 1.1 %其他: 1.1 %China: 0.3 %China: 0.3 %Russian Federation: 0.2 %Russian Federation: 0.2 %上海: 1.9 %上海: 1.9 %北京: 3.9 %北京: 3.9 %南京: 0.2 %南京: 0.2 %南宁: 0.2 %南宁: 0.2 %台州: 0.2 %台州: 0.2 %吉林: 0.6 %吉林: 0.6 %哥伦布: 0.2 %哥伦布: 0.2 %圣彼得堡: 0.2 %圣彼得堡: 0.2 %大连: 0.2 %大连: 0.2 %天津: 0.2 %天津: 0.2 %奥斯陆: 0.2 %奥斯陆: 0.2 %安康: 0.2 %安康: 0.2 %广州: 0.5 %广州: 0.5 %张家口: 2.9 %张家口: 2.9 %扬州: 0.2 %扬州: 0.2 %曼谷: 0.2 %曼谷: 0.2 %杭州: 0.5 %杭州: 0.5 %株洲: 0.5 %株洲: 0.5 %武汉: 0.5 %武汉: 0.5 %沈阳: 0.2 %沈阳: 0.2 %湖州: 0.2 %湖州: 0.2 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.3 %福州: 0.3 %芒廷维尤: 35.6 %芒廷维尤: 35.6 %苏州: 0.2 %苏州: 0.2 %莫斯科: 2.8 %莫斯科: 2.8 %衢州: 0.3 %衢州: 0.3 %西宁: 35.9 %西宁: 35.9 %西安: 0.2 %西安: 0.2 %诺沃克: 0.2 %诺沃克: 0.2 %车士活: 0.3 %车士活: 0.3 %铁岭: 0.2 %铁岭: 0.2 %长春: 0.2 %长春: 0.2 %长治: 0.3 %长治: 0.3 %其他其他ChinaRussian Federation上海北京南京南宁台州吉林哥伦布圣彼得堡大连天津奥斯陆安康广州张家口扬州曼谷杭州株洲武汉沈阳湖州石家庄福州芒廷维尤苏州莫斯科衢州西宁西安诺沃克车士活铁岭长春长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1052) PDF downloads(149) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return