中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 41 Issue 11
Nov.  2025
Turn off MathJax
Article Contents

Application of artificial intelligence in clinical trials of liver diseases: A methodological perspective

DOI: 10.12449/JCH251105
More Information
  • Corresponding author: KONG Yuanyuan, kongyy@ccmu.edu.cn (ORCID: 0000-0002-2586-1443)
  • Received Date: 2025-08-25
  • Accepted Date: 2025-10-08
  • Published Date: 2025-11-25
  • In recent years, the exploration and development of artificial intelligence (AI) technology in clinical trials for liver diseases have promoted the continuous innovation of research methods and processes in this field. AI has gradually become an important technical tool for various links of clinical trial including patient selection, risk stratification, endpoint evaluation, and result interpretation. Nevertheless, the standardized integration of AI into clinical trials still faces the methodological challenges such as data quality control, model interpretability, and causal inference. From the perspective of methodology, this article systematically reviews the principal application scenarios of AI as an object under investigation (validation trials) and as a research tool (supportive trials) in clinical trials for liver diseases, as well as the major methodological challenges of AI-related clinical trials along and the corresponding solution strategies, in order to provide methodological guidance for promoting the scientific and standardized implementation of AI technologies.

     

  • loading
  • [1]
    KANG HJ, LEE JM, AHN C, et al. Low dose of contrast agent and low radiation liver computed tomography with deep-learning-based contrast boosting model in participants at high-risk for hepatocellular carcinoma: Prospective, randomized, double-blind study[J]. Eur Radiol, 2023, 33( 5): 3660- 3670. DOI: 10.1007/s00330-023-09520-4.
    [2]
    BAE JS, LEE JM, KIM SW, et al. Low-contrast-dose liver CT using low monoenergetic images with deep learning-based denoising for assessing hepatocellular carcinoma: A randomized controlled noninferiority trial[J]. Eur Radiol, 2023, 33( 6): 4344- 4354. DOI: 10.1007/s00330-022-09298-x.
    [3]
    YOON JH, PARK JY, LEE SM, et al. Renal protection CT protocol using low-dose and low-concentration iodine contrast medium in at-risk patients of HCC and with chronic kidney disease: A randomized controlled non-inferiority trial[J]. Cancer Imaging, 2023, 23( 1): 100. DOI: 10.1186/s40644-023-00616-0.
    [4]
    ODISIO BC, ALBUQUERQUE J, LIN YM, et al. Software-based versus visual assessment of the minimal ablative margin in patients with liver tumours undergoing percutaneous thermal ablation(COVER-ALL): A randomised phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2025, 10( 5): 442- 451. DOI: 10.1016/S2468-1253(25)00024-X.
    [5]
    JEON SK, LEE JM, JOO I, et al. Two-dimensional convolutional neural network using quantitative US for noninvasive assessment of hepatic steatosis in NAFLD[J]. Radiology, 2023, 307( 1): e221510. DOI: 10.1148/radiol.221510.
    [6]
    WU CH, YEN KC, WANG LY, et al. Automated whole-liver fat quantification with magnetic resonance imaging-derived proton density fat fraction map: A prospective study in Taiwan[J]. Gut Liver, 2025, 19( 4): 617- 626. DOI: 10.5009/gnl240408.
    [7]
    JOSHI S, SHAMANNA P, DHARMALINGAM M, et al. Digital twin-enabled personalized nutrition improves metabolic dysfunction-associated fatty liver disease in type 2 diabetes: Results of a 1-year randomized controlled study[J]. Endocr Pract, 2023, 29( 12): 960- 970. DOI: 10.1016/j.eprac.2023.08.016.
    [8]
    TIYARATTANACHAI T, APIPARAKOON T, CHAICHUEN O, et al. Artificial intelligence assists operators in real-time detection of focal liver lesions during ultrasound: A randomized controlled study[J]. Eur J Radiol, 2023, 165: 110932. DOI: 10.1016/j.ejrad.2023.110932.
    [9]
    LEE DH, LEE JM, LEE CH, et al. Image quality and diagnostic performance of low-dose liver CT with deep learning reconstruction versus standard-dose CT[J]. Radiol Artif Intell, 2024, 6( 2): e230192. DOI: 10.1148/ryai.230192.
    [10]
    ZHANG YM, CUI J, WAN W, et al. Multimodal imaging under artificial intelligence algorithm for the diagnosis of liver cancer and its relationship with expressions of EZH2 and p57[J]. Comput Intell Neurosci, 2022, 2022: 4081654. DOI: 10.1155/2022/4081654.
    [11]
    KANG M, KIM MS. Managing postembolization syndrome through a machine learning-based clinical decision support system: A randomized controlled trial[J]. Comput Inform Nurs, 2024, 42( 11): 817- 828. DOI: 10.1097/CIN.0000000000001188.
    [12]
    LOOMBA R, NOUREDDIN M, KOWDLEY KV, et al. Combination therapies including cilofexor and firsocostat for bridging fibrosis and cirrhosis attributable to NASH[J]. Hepatology, 2021, 73( 2): 625- 643. DOI: 10.1002/hep.31622.
    [13]
    MCMICHAEL J, LIEBERMAN R, MCCAULEY J, et al. Computer-guided randomized concentration-controlled trials of tacrolimus in autoimmunity: Multiple sclerosis and primary biliary cirrhosis[J]. Ther Drug Monit, 1996, 18( 4): 435- 437. DOI: 10.1097/00007691-199608000-00021.
    [14]
    FENG SJ, WANG JH, WANG LH, et al. Current status and analysis of machine learning in hepatocellular carcinoma[J]. J Clin Transl Hepatol, 2023, 11( 5): 1184- 1191. DOI: 10.14218/JCTH.2022.00077S.
    [15]
    CALDERARO J, ŽIGUTYTĖ L, TRUHN D, et al. Artificial intelligence in liver cancer: New tools for research and patient management[J]. Nat Rev Gastroenterol Hepatol, 2024, 21( 8): 585- 599. DOI: 10.1038/s41575-024-00919-y.
    [16]
    GHOSH S, ZHAO X, ALIM M, et al. Artificial intelligence applied to’omics data in liver disease: Towards a personalised approach for diagnosis, prognosis and treatment[J]. Gut, 2025, 74( 2): e331740. DOI: 10.1136/gutjnl-2023-331740.
    [17]
    CALDERARO J, SERAPHIN TP, LUEDDE T, et al. Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma[J]. J Hepatol, 2022, 76( 6): 1348- 1361. DOI: 10.1016/j.jhep.2022.01.014.
    [18]
    MATTHAY EC, NEILL DB, TITUS AR, et al. Integrating artificial intelligence into causal research in epidemiology[J]. Curr Epidemiol Rep, 2025, 12( 1): 6. DOI: 10.1007/s40471-025-00359-5.
    [19]
    CLUSMANN J, BALAGUER-MONTERO M, BASSEGODA O, et al. The barriers for uptake of artificial intelligence in hepatology and how to overcome them[J]. J Hepatol, 2025 DOI: 10.1016/j.jhep.2025.07.003.[ Online ahead of print]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(6)

    Article Metrics

    Article views (4) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return