| [1] |
Liver Failure and Artificial Liver Group, Chinese Society of Infectious Diseases, Chinese Medical Association; Severe Liver Disease and Artificial Liver Group, Chinese Society of Hepatology, Chinese Medical Association. Guideline for diagnosis and treatment of liver failure(2024 version)[J]. J Clin Hepatol, 2024, 40( 12): 2371- 2387. DOI: 10.12449/JCH241206.
中华医学会感染病学分会肝衰竭与人工肝学组, 中华医学会肝病学分会重型肝病与人工肝学组. 肝衰竭诊治指南(2024年版)[J]. 临床肝胆病杂志, 2024, 40( 12): 2371- 2387. DOI: 10.12449/JCH241206.
|
| [2] |
MAIWALL R, KULKARNI AV, ARAB JP, et al. Acute liver failure[J]. Lancet, 2024, 404( 10454): 789- 802. DOI: 10.1016/S0140-6736(24)00693-7.
|
| [3] |
ARROYO V, MOREAU R, JALAN R. Acute-on-chronic liver failure[J]. N Engl J Med, 2020, 382( 22): 2137- 2145. DOI: 10.1056/nejmra1914900.
|
| [4] |
LUO JJ, LI JQ, LI P, et al. Acute-on-chronic liver failure: Far to go-a review[J]. Crit Care, 2023, 27( 1): 259. DOI: 10.1186/s13054-023-04540-4.
|
| [5] |
KULKARNI AV, SARIN SK. Acute-on-chronic liver failure–steps towards harmonization of the definition![J]. J Hepatol, 2024, 81( 2): 360- 366. DOI: 10.1016/j.jhep.2024.03.036.
|
| [6] |
ZACCHERINI G, WEISS E, MOREAU R. Acute-on-chronic liver failure: Definitions, pathophysiology and principles of treatment[J]. JHEP Rep, 2021, 3( 1): 100176. DOI: 10.1016/j.jhepr.2020.100176.
|
| [7] |
SIDEY-GIBBONS JAM, SIDEY-GIBBONS CJ. Machine learning in medicine: A practical introduction[J]. BMC Med Res Methodol, 2019, 19( 1): 64. DOI: 10.1186/s12874-019-0681-4.
|
| [8] |
JIANG F, JIANG Y, ZHI H, et al. Artificial intelligence in healthcare: Past, present and future[J]. Stroke Vasc Neurol, 2017, 2( 4): 230- 243. DOI: 10.1136/svn-2017-000101.
|
| [9] |
AHN JC, CONNELL A, SIMONETTO DA, et al. Application of artificial intelligence for the diagnosis and treatment of liver diseases[J]. Hepatology, 2021, 73( 6): 2546- 2563. DOI: 10.1002/hep.31603.
|
| [10] |
WU TZ, LI J, SHAO L, et al. Development of diagnostic criteria and a prognostic score for hepatitis B virus-related acute-on-chronic liver failure[J]. Gut, 2018, 67( 12): 2181- 2191. DOI: 10.1136/gutjnl-2017-314641.
|
| [11] |
MOREAU R, JALAN R, GINES P, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis[J]. Gastroenterology, 2013, 144( 7): 1426- 1437, 1437. e1- 9. DOI: 10.1053/j.gastro.2013.02.042.
|
| [12] |
O’LEARY JG, REDDY KR, GARCIA-TSAO G, et al. NACSELD acute-on-chronic liver failure(NACSELD-ACLF) score predicts 30-day survival in hospitalized patients with cirrhosis[J]. Hepatology, 2018, 67( 6): 2367- 2374. DOI: 10.1002/hep.29773.
|
| [13] |
SARIN SK, KUMAR A, ALMEIDA JA, et al. Acute-on-chronic liver failure: Consensus recommendations of the Asian Pacific Association for the study of the liver(APASL)[J]. Hepatol Int, 2009, 3( 1): 269- 282. DOI: 10.1007/s12072-008-9106-x.
|
| [14] |
European Association for the Study of the Liver. EASL clinical practice guidelines on acute-on-chronic liver failure[J]. J Hepatol, 2023, 79( 2): 461- 491. DOI: 10.1016/j.jhep.2023.04.021.
|
| [15] |
KARVELLAS CJ, BAJAJ JS, KAMATH PS, et al. AASLD practice guidance on acute-on-chronic liver failure and the management of critically ill patients with cirrhosis[J]. Hepatology, 2024, 79( 6): 1463- 1502. DOI: 10.1097/HEP.0000000000000671.
|
| [16] |
LUO JJ, HU MQ, FENG TT, et al. Performance of the China-CLIF framework in acute-on-chronic liver failure: A multicohort study across all aetiologies[J]. Gut, 2025. DOI: 10.1136/gutjnl-2025-335651.[ Epub ahead of print]
|
| [17] |
CHOUDHURY A, JINDAL A, MAIWALL R, et al. Liver failure determines the outcome in patients of acute-on-chronic liver failure(ACLF): Comparison of APASL ACLF research consortium(AARC) and CLIF-SOFA models[J]. Hepatol Int, 2017, 11( 5): 461- 471. DOI: 10.1007/s12072-017-9816-z.
|
| [18] |
RAJKOMAR A, DEAN J, KOHANE I. Machine learning in medicine[J]. N Engl J Med, 2019, 380( 14): 1347- 1358. DOI: 10.1056/nejmra1814259.
|
| [19] |
SILVEY S, KAMATH PS, GEORGE J, et al. Enhancement of inpatient mortality prognostication with machine learning in a prospective global cohort of patients with cirrhosis with external validation[J]. Gastroenterology, 2025. DOI: 10.1053/j.gastro.2025.07.015.[ Online ahead of print]
|
| [20] |
ANAND AC, NIGHTINGALE P, NEUBERGER JM. Early indicators of prognosis in fulminant hepatic failure: An assessment of the King’s criteria[J]. J Hepatol, 1997, 26( 1): 62- 68. DOI: 10.1016/s0168-8278(97)80010-4.
|
| [21] |
KAMATH PS, WIESNER RH, MALINCHOC M, et al. A model to predict survival in patients with end-stage liver disease[J]. Hepatology, 2001, 33( 2): 464- 470. DOI: 10.1053/jhep.2001.22172.
|
| [22] |
KOCH DG, TILLMAN H, DURKALSKI V, et al. Development of a model to predict transplant-free survival of patients with acute liver failure[J]. Clin Gastroenterol Hepatol, 2016, 14( 8): 1199- 1206. e 2. DOI: 10.1016/j.cgh.2016.03.046.
|
| [23] |
HAN L, HUANG A, CHEN JJ, et al. Clinical characteristics and prognosis of non-APAP drug-induced acute liver failure: A large multicenter cohort study[J]. Hepatol Int, 2024, 18( 1): 225- 237. DOI: 10.1007/s12072-023-10541-w.
|
| [24] |
LI JQ, LIANG X, YOU SL, et al. Development and validation of a new prognostic score for hepatitis B virus-related acute-on-chronic liver failure[J]. J Hepatol, 2021, 75( 5): 1104- 1115. DOI: 10.1016/j.jhep.2021.05.026.
|
| [25] |
HU MQ, LUO JJ, WU Y, et al. Integrating prior decompensation into ACLF definition to enhance clinical management[J]. Hepatol Int, 2025. DOI: 10.1007/s12072-025-10805-7.[ Online ahead of print]
|
| [26] |
LUO JJ, LIANG X, XIN JJ, et al. Predicting the onset of hepatitis B virus-related acute-on-chronic liver failure[J]. Clin Gastroenterol Hepatol, 2023, 21( 3): 681- 693. DOI: 10.1016/j.cgh.2022.03.016.
|
| [27] |
JALAN R, SALIBA F, PAVESI M, et al. Development and validation of a prognostic score to predict mortality in patients with acute-on-chronic liver failure[J]. J Hepatol, 2014, 61( 5): 1038- 1047. DOI: 10.1016/j.jhep.2014.06.012.
|
| [28] |
WEISS E, DE LA PEÑA-RAMIREZ C, AGUILAR F, et al. Sympathetic nervous activation, mitochondrial dysfunction and outcome in acutely decompensated cirrhosis: The metabolomic prognostic models(CLIF-C MET)[J]. Gut, 2023, 72( 8): 1581- 1591. DOI: 10.1136/gutjnl-2022-328708.
|
| [29] |
TREBICKA J, AGUILAR F, QUEIROZ FARIAS A, et al. Gene score to quantify systemic inflammation in patients with acutely decompensated cirrhosis[J]. Gut, 2025, 74( 8): 1293- 1307. DOI: 10.1136/gutjnl-2024-333876.
|
| [30] |
SPEISER JL, LEE WM, KARVELLAS CJ. Predicting outcome on admission and post-admission for acetaminophen-induced acute liver failure using classification and regression tree models[J]. PLoS One, 2015, 10( 4): e0122929. DOI: 10.1371/journal.pone.0122929.
|
| [31] |
SPEISER JL, KARVELLAS CJ, WOLF BJ, et al. Predicting daily outcomes in acetaminophen-induced acute liver failure patients with machine learning techniques[J]. Comput Methods Programs Biomed, 2019, 175: 111- 120. DOI: 10.1016/j.cmpb.2019.04.012.
|
| [32] |
YUAN MQ, YAO LC, HU X, et al. Identification of effective diagnostic biomarker and immune cell infiltration characteristics in acute liver failure by integrating bioinformatics analysis and machine-learning strategies[J]. Front Genet, 2022, 13: 1004912. DOI: 10.3389/fgene.2022.1004912.
|
| [33] |
PAPPADA S, SATHELLY B, SCHMIEDER J, et al. An artificial neural network approach to diagnose and predict liver dysfunction and failure in the critical care setting[J]. Hippokratia, 2024, 28( 1): 1- 10.
|
| [34] |
DONG R, LUO ZH, XUE H, et al. Development and validation of an explainable machine learning model for warning of hepatitis E virus-related acute liver failure[J]. Liver Int, 2025, 45( 6): e70129. DOI: 10.1111/liv.70129.
|
| [35] |
SHI KQ, ZHOU YY, YAN HD, et al. Classification and regression tree analysis of acute-on-chronic hepatitis B liver failure: Seeing the forest for the trees[J]. J Viral Hepat, 2017, 24( 2): 132- 140. DOI: 10.1111/jvh.12617.
|
| [36] |
ZHENG MH, SHI KQ, LIN XF, et al. A model to predict 3-month mortality risk of acute-on-chronic hepatitis B liver failure using artificial neural network[J]. J Viral Hepat, 2013, 20( 4): 248- 255. DOI: 10.1111/j.1365-2893.2012.01647.x.
|
| [37] |
HOU YX, ZHANG QQ, GAO FY, et al. Artificial neural network-based models used for predicting 28- and 90-day mortality of patients with hepatitis B-associated acute-on-chronic liver failure[J]. BMC Gastroenterol, 2020, 20( 1): 75. DOI: 10.1186/s12876-020-01191-5.
|
| [38] |
MUSUNURI B, SHETTY S, SHETTY DK, et al. Acute-on-chronic liver failure mortality prediction using an artificial neural network[J]. Eng Sci, 2021, 15: 187- 196. DOI: 10.30919/es8d515
|
| [39] |
GARCIA MS, AGARWAL B, MOOKERJEE RP, et al. An accurate data preparation approach for the prediction of mortality in ACLF patients using the CANONIC dataset[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2019, 2019: 1371- 1377. DOI: 10.1109/EMBC.2019.8857239.
|
| [40] |
VERMA N, CHOUDHURY A, SINGH V, et al. APASL-ACLF Research Consortium-Artificial Intelligence(AARC-AI) model precisely predicts outcomes in acute-on-chronic liver failure patients[J]. Liver Int, 2023, 43( 2): 442- 451. DOI: 10.1111/liv.15361.
|
| [41] |
QIU ST, ZHAO YM, HU JX, et al. Predicting the 28-day prognosis of acute-on-chronic liver failure patients based on machine learning[J]. Dig Liver Dis, 2024, 56( 12): 2095- 2102. DOI: 10.1016/j.dld.2024.06.029.
|
| [42] |
XU YT, ZHANG YQ, YANG ZJ, et al. Imbalanced and semi-supervised classification for prognosis of ACLF[J]. J Intell Fuzzy Syst, 2015, 28( 2): 737- 745. DOI: 10.5555/2729770.2729793.
|
| [43] |
XIE ZB, DING L, LI YZ. Computed tomography image features under convolutional neural network algorithm in analysis of inflammatory factor level and prognosis of patients with hepatitis B virus-associated acute-on-chronic liver failure[J]. J Healthc Eng, 2021, 2021: 2110612. DOI: 10.1155/2021/2110612.
|
| [44] |
VERMA N, GARG P, VALSAN A, et al. Identification of four novel acute-on-chronic liver failure clusters with distinct clinical trajectories and mortality using machine learning methods[J]. Aliment Pharmacol Ther, 2024, 60( 11-12): 1534- 1548. DOI: 10.1111/apt.18274.
|
| [45] |
LI P, LIANG X, LUO JJ, et al. Omics in acute-on-chronic liver failure[J]. Liver Int, 2025, 45( 3): e15634. DOI: 10.1111/liv.15634.
|
| [46] |
TAN WT, XIA J, DAN YJ, et al. Genome-wide association study identifies HLA-DR variants conferring risk of HBV-related acute-on-chronic liver failure[J]. Gut, 2018, 67( 4): 757- 766. DOI: 10.1136/gutjnl-2016-313035.
|
| [47] |
LI J, LIANG X, JIANG J, et al. PBMC transcriptomics identifies immune-metabolism disorder during the development of HBV-ACLF[J]. Gut, 2022, 71( 1): 163- 175. DOI: 10.1136/gutjnl-2020-323395.
|
| [48] |
HE LL, CAI Q, LIANG X, et al. ETS2 alleviates acute-on-chronic liver failure by suppressing excessive inflammation[J]. J Med Virol, 2023, 95( 4): e28710. DOI: 10.1002/jmv.28710.
|
| [49] |
LIANG X, LI P, JIANG J, et al. Transcriptomics unveils immune metabolic disruption and a novel biomarker of mortality in patients with HBV-related acute-on-chronic liver failure[J]. JHEP Rep, 2023, 5( 9): 100848. DOI: 10.1016/j.jhepr.2023.100848.
|
| [50] |
YANG H, CAI Q, XIN JJ, et al. SEMA6B induces macrophage-mediated inflammation and hepatocyte apoptosis in hepatitis B virus-related acute-on-chronic liver failure[J]. Theranostics, 2024, 14( 13): 5200- 5218. DOI: 10.7150/thno.97007.
|
| [51] |
HASSAN HM, LIANG X, XIN JJ, et al. Thrombospondin 1 enhances systemic inflammation and disease severity in acute-on-chronic liver failure[J]. BMC Med, 2024, 22( 1): 95. DOI: 10.1186/s12916-024-03318-x.
|
| [52] |
LIANG X, LUO JJ, ZHOU Q, et al. Single-cell multimodal analysis reveals the dynamic immunopathogenesis of HBV-ACLF progression[J]. Gut, 2025. DOI: 10.1136/gutjnl-2024-333308.[ Epub ahead of print]
|
| [53] |
YU X, TIAN W, BAO X, et al. Dissecting the liver inflammation ecosystem identifies annexin A1 as a pro-resolving target for liver failure[J]. Hepatology, 2025. DOI: 10.1097/HEP.0000000000001427.[ Epub ahead of print]
|
| [54] |
SUN ZY, LIU XL, WU DX, et al. Circulating proteomic panels for diagnosis and risk stratification of acute-on-chronic liver failure in patients with viral hepatitis B[J]. Theranostics, 2019, 9( 4): 1200- 1214. DOI: 10.7150/thno.31991.
|
| [55] |
ZHANG Y, TAN WT, WANG XB, et al. Metabolic biomarkers significantly enhance the prediction of HBV-related ACLF occurrence and outcomes[J]. J Hepatol, 2023, 79( 5): 1159- 1171. DOI: 10.1016/j.jhep.2023.07.011.
|
| [56] |
ZHANG IW, CURTO A, LÓPEZ-VICARIO C, et al. Mitochondrial dysfunction governs immunometabolism in leukocytes of patients with acute-on-chronic liver failure[J]. J Hepatol, 2022, 76( 1): 93- 106. DOI: 10.1016/j.jhep.2021.08.009.
|
| [57] |
SOLÉ C, GUILLY S, SILVA K DA, et al. Alterations in gut microbiome in cirrhosis as assessed by quantitative metagenomics: Relationship with acute-on-chronic liver failure and prognosis[J]. Gastroenterology, 2021, 160( 1): 206- 218. e 13. DOI: 10.1053/j.gastro.2020.08.054.
|
| [58] |
WIEST IC, WOLF F, LEßMANN ME, et al. LLM-AIx: An open source pipeline for Information Extraction from unstructured medical text based on privacy preserving Large Language Models[J]. medRxiv, 2024. DOI: 10.1101/2024.09.02.24312917.
|
| [59] |
CLUSMANN J, BALAGUER-MONTERO M, BASSEGODA O, et al. The barriers for uptake of artificial intelligence in hepatology and how to overcome them[J]. J Hepatol, 2025. DOI: 10.1016/j.jhep.2025.07.003.[ Epub ahead of print]
|
| [60] |
BHAT M, RABINDRANATH M, CHARA BS, et al. Artificial intelligence, machine learning, and deep learning in liver transplantation[J]. J Hepatol, 2023, 78( 6): 1216- 1233. DOI: 10.1016/j.jhep.2023.01.006.
|