中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 41 Issue 11
Nov.  2025
Turn off MathJax
Article Contents

Application and challenges of artificial intelligence in prediction and prognosis systems for liver failure

DOI: 10.12449/JCH251104
Research funding:

Key R&D Program of Zhejiang (2025C02130)

More Information
  • Corresponding author: LI Jun, lijun2009@zju.edu.cn (ORCID: 0000-0002-7236-8088)
  • Received Date: 2025-09-01
  • Accepted Date: 2025-10-14
  • Published Date: 2025-11-25
  • Liver failure is a severe liver injury caused by multiple factors, leading to significant impairment or decompensation of the liver’s synthetic, detoxification, metabolic, and biotransformation functions, and it is a group of clinical syndromes with the main manifestations of jaundice, coagulation disorder, hepatorenal syndrome, hepatic encephalopathy, and ascites. Early and accurate prognostic prediction is crucial for improving the clinical outcome of patients. In recent years, artificial intelligence (AI)-based early warning and prediction models are gradually transforming the traditional diagnostic and therapeutic approaches. This article systematically reviews the advances in the application of machine learning-based early warning and prediction models in acute liver failure and acute-on-chronic liver failure, and related models have shown good performance in risk stratification and prognosis prediction. With the continuous development of related technologies, AI is expected to provide new opportunities for the early intervention and precise treatment of liver failure, thereby significantly improving the prognosis of patients.

     

  • loading
  • [1]
    Liver Failure and Artificial Liver Group, Chinese Society of Infectious Diseases, Chinese Medical Association; Severe Liver Disease and Artificial Liver Group, Chinese Society of Hepatology, Chinese Medical Association. Guideline for diagnosis and treatment of liver failure(2024 version)[J]. J Clin Hepatol, 2024, 40( 12): 2371- 2387. DOI: 10.12449/JCH241206.

    中华医学会感染病学分会肝衰竭与人工肝学组, 中华医学会肝病学分会重型肝病与人工肝学组. 肝衰竭诊治指南(2024年版)[J]. 临床肝胆病杂志, 2024, 40( 12): 2371- 2387. DOI: 10.12449/JCH241206.
    [2]
    MAIWALL R, KULKARNI AV, ARAB JP, et al. Acute liver failure[J]. Lancet, 2024, 404( 10454): 789- 802. DOI: 10.1016/S0140-6736(24)00693-7.
    [3]
    ARROYO V, MOREAU R, JALAN R. Acute-on-chronic liver failure[J]. N Engl J Med, 2020, 382( 22): 2137- 2145. DOI: 10.1056/nejmra1914900.
    [4]
    LUO JJ, LI JQ, LI P, et al. Acute-on-chronic liver failure: Far to go-a review[J]. Crit Care, 2023, 27( 1): 259. DOI: 10.1186/s13054-023-04540-4.
    [5]
    KULKARNI AV, SARIN SK. Acute-on-chronic liver failure–steps towards harmonization of the definition![J]. J Hepatol, 2024, 81( 2): 360- 366. DOI: 10.1016/j.jhep.2024.03.036.
    [6]
    ZACCHERINI G, WEISS E, MOREAU R. Acute-on-chronic liver failure: Definitions, pathophysiology and principles of treatment[J]. JHEP Rep, 2021, 3( 1): 100176. DOI: 10.1016/j.jhepr.2020.100176.
    [7]
    SIDEY-GIBBONS JAM, SIDEY-GIBBONS CJ. Machine learning in medicine: A practical introduction[J]. BMC Med Res Methodol, 2019, 19( 1): 64. DOI: 10.1186/s12874-019-0681-4.
    [8]
    JIANG F, JIANG Y, ZHI H, et al. Artificial intelligence in healthcare: Past, present and future[J]. Stroke Vasc Neurol, 2017, 2( 4): 230- 243. DOI: 10.1136/svn-2017-000101.
    [9]
    AHN JC, CONNELL A, SIMONETTO DA, et al. Application of artificial intelligence for the diagnosis and treatment of liver diseases[J]. Hepatology, 2021, 73( 6): 2546- 2563. DOI: 10.1002/hep.31603.
    [10]
    WU TZ, LI J, SHAO L, et al. Development of diagnostic criteria and a prognostic score for hepatitis B virus-related acute-on-chronic liver failure[J]. Gut, 2018, 67( 12): 2181- 2191. DOI: 10.1136/gutjnl-2017-314641.
    [11]
    MOREAU R, JALAN R, GINES P, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis[J]. Gastroenterology, 2013, 144( 7): 1426- 1437, 1437. e1- 9. DOI: 10.1053/j.gastro.2013.02.042.
    [12]
    O’LEARY JG, REDDY KR, GARCIA-TSAO G, et al. NACSELD acute-on-chronic liver failure(NACSELD-ACLF) score predicts 30-day survival in hospitalized patients with cirrhosis[J]. Hepatology, 2018, 67( 6): 2367- 2374. DOI: 10.1002/hep.29773.
    [13]
    SARIN SK, KUMAR A, ALMEIDA JA, et al. Acute-on-chronic liver failure: Consensus recommendations of the Asian Pacific Association for the study of the liver(APASL)[J]. Hepatol Int, 2009, 3( 1): 269- 282. DOI: 10.1007/s12072-008-9106-x.
    [14]
    European Association for the Study of the Liver. EASL clinical practice guidelines on acute-on-chronic liver failure[J]. J Hepatol, 2023, 79( 2): 461- 491. DOI: 10.1016/j.jhep.2023.04.021.
    [15]
    KARVELLAS CJ, BAJAJ JS, KAMATH PS, et al. AASLD practice guidance on acute-on-chronic liver failure and the management of critically ill patients with cirrhosis[J]. Hepatology, 2024, 79( 6): 1463- 1502. DOI: 10.1097/HEP.0000000000000671.
    [16]
    LUO JJ, HU MQ, FENG TT, et al. Performance of the China-CLIF framework in acute-on-chronic liver failure: A multicohort study across all aetiologies[J]. Gut, 2025. DOI: 10.1136/gutjnl-2025-335651.[ Epub ahead of print]
    [17]
    CHOUDHURY A, JINDAL A, MAIWALL R, et al. Liver failure determines the outcome in patients of acute-on-chronic liver failure(ACLF): Comparison of APASL ACLF research consortium(AARC) and CLIF-SOFA models[J]. Hepatol Int, 2017, 11( 5): 461- 471. DOI: 10.1007/s12072-017-9816-z.
    [18]
    RAJKOMAR A, DEAN J, KOHANE I. Machine learning in medicine[J]. N Engl J Med, 2019, 380( 14): 1347- 1358. DOI: 10.1056/nejmra1814259.
    [19]
    SILVEY S, KAMATH PS, GEORGE J, et al. Enhancement of inpatient mortality prognostication with machine learning in a prospective global cohort of patients with cirrhosis with external validation[J]. Gastroenterology, 2025. DOI: 10.1053/j.gastro.2025.07.015.[ Online ahead of print]
    [20]
    ANAND AC, NIGHTINGALE P, NEUBERGER JM. Early indicators of prognosis in fulminant hepatic failure: An assessment of the King’s criteria[J]. J Hepatol, 1997, 26( 1): 62- 68. DOI: 10.1016/s0168-8278(97)80010-4.
    [21]
    KAMATH PS, WIESNER RH, MALINCHOC M, et al. A model to predict survival in patients with end-stage liver disease[J]. Hepatology, 2001, 33( 2): 464- 470. DOI: 10.1053/jhep.2001.22172.
    [22]
    KOCH DG, TILLMAN H, DURKALSKI V, et al. Development of a model to predict transplant-free survival of patients with acute liver failure[J]. Clin Gastroenterol Hepatol, 2016, 14( 8): 1199- 1206. e 2. DOI: 10.1016/j.cgh.2016.03.046.
    [23]
    HAN L, HUANG A, CHEN JJ, et al. Clinical characteristics and prognosis of non-APAP drug-induced acute liver failure: A large multicenter cohort study[J]. Hepatol Int, 2024, 18( 1): 225- 237. DOI: 10.1007/s12072-023-10541-w.
    [24]
    LI JQ, LIANG X, YOU SL, et al. Development and validation of a new prognostic score for hepatitis B virus-related acute-on-chronic liver failure[J]. J Hepatol, 2021, 75( 5): 1104- 1115. DOI: 10.1016/j.jhep.2021.05.026.
    [25]
    HU MQ, LUO JJ, WU Y, et al. Integrating prior decompensation into ACLF definition to enhance clinical management[J]. Hepatol Int, 2025. DOI: 10.1007/s12072-025-10805-7.[ Online ahead of print]
    [26]
    LUO JJ, LIANG X, XIN JJ, et al. Predicting the onset of hepatitis B virus-related acute-on-chronic liver failure[J]. Clin Gastroenterol Hepatol, 2023, 21( 3): 681- 693. DOI: 10.1016/j.cgh.2022.03.016.
    [27]
    JALAN R, SALIBA F, PAVESI M, et al. Development and validation of a prognostic score to predict mortality in patients with acute-on-chronic liver failure[J]. J Hepatol, 2014, 61( 5): 1038- 1047. DOI: 10.1016/j.jhep.2014.06.012.
    [28]
    WEISS E, DE LA PEÑA-RAMIREZ C, AGUILAR F, et al. Sympathetic nervous activation, mitochondrial dysfunction and outcome in acutely decompensated cirrhosis: The metabolomic prognostic models(CLIF-C MET)[J]. Gut, 2023, 72( 8): 1581- 1591. DOI: 10.1136/gutjnl-2022-328708.
    [29]
    TREBICKA J, AGUILAR F, QUEIROZ FARIAS A, et al. Gene score to quantify systemic inflammation in patients with acutely decompensated cirrhosis[J]. Gut, 2025, 74( 8): 1293- 1307. DOI: 10.1136/gutjnl-2024-333876.
    [30]
    SPEISER JL, LEE WM, KARVELLAS CJ. Predicting outcome on admission and post-admission for acetaminophen-induced acute liver failure using classification and regression tree models[J]. PLoS One, 2015, 10( 4): e0122929. DOI: 10.1371/journal.pone.0122929.
    [31]
    SPEISER JL, KARVELLAS CJ, WOLF BJ, et al. Predicting daily outcomes in acetaminophen-induced acute liver failure patients with machine learning techniques[J]. Comput Methods Programs Biomed, 2019, 175: 111- 120. DOI: 10.1016/j.cmpb.2019.04.012.
    [32]
    YUAN MQ, YAO LC, HU X, et al. Identification of effective diagnostic biomarker and immune cell infiltration characteristics in acute liver failure by integrating bioinformatics analysis and machine-learning strategies[J]. Front Genet, 2022, 13: 1004912. DOI: 10.3389/fgene.2022.1004912.
    [33]
    PAPPADA S, SATHELLY B, SCHMIEDER J, et al. An artificial neural network approach to diagnose and predict liver dysfunction and failure in the critical care setting[J]. Hippokratia, 2024, 28( 1): 1- 10.
    [34]
    DONG R, LUO ZH, XUE H, et al. Development and validation of an explainable machine learning model for warning of hepatitis E virus-related acute liver failure[J]. Liver Int, 2025, 45( 6): e70129. DOI: 10.1111/liv.70129.
    [35]
    SHI KQ, ZHOU YY, YAN HD, et al. Classification and regression tree analysis of acute-on-chronic hepatitis B liver failure: Seeing the forest for the trees[J]. J Viral Hepat, 2017, 24( 2): 132- 140. DOI: 10.1111/jvh.12617.
    [36]
    ZHENG MH, SHI KQ, LIN XF, et al. A model to predict 3-month mortality risk of acute-on-chronic hepatitis B liver failure using artificial neural network[J]. J Viral Hepat, 2013, 20( 4): 248- 255. DOI: 10.1111/j.1365-2893.2012.01647.x.
    [37]
    HOU YX, ZHANG QQ, GAO FY, et al. Artificial neural network-based models used for predicting 28- and 90-day mortality of patients with hepatitis B-associated acute-on-chronic liver failure[J]. BMC Gastroenterol, 2020, 20( 1): 75. DOI: 10.1186/s12876-020-01191-5.
    [38]
    MUSUNURI B, SHETTY S, SHETTY DK, et al. Acute-on-chronic liver failure mortality prediction using an artificial neural network[J]. Eng Sci, 2021, 15: 187- 196. DOI: 10.30919/es8d515
    [39]
    GARCIA MS, AGARWAL B, MOOKERJEE RP, et al. An accurate data preparation approach for the prediction of mortality in ACLF patients using the CANONIC dataset[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2019, 2019: 1371- 1377. DOI: 10.1109/EMBC.2019.8857239.
    [40]
    VERMA N, CHOUDHURY A, SINGH V, et al. APASL-ACLF Research Consortium-Artificial Intelligence(AARC-AI) model precisely predicts outcomes in acute-on-chronic liver failure patients[J]. Liver Int, 2023, 43( 2): 442- 451. DOI: 10.1111/liv.15361.
    [41]
    QIU ST, ZHAO YM, HU JX, et al. Predicting the 28-day prognosis of acute-on-chronic liver failure patients based on machine learning[J]. Dig Liver Dis, 2024, 56( 12): 2095- 2102. DOI: 10.1016/j.dld.2024.06.029.
    [42]
    XU YT, ZHANG YQ, YANG ZJ, et al. Imbalanced and semi-supervised classification for prognosis of ACLF[J]. J Intell Fuzzy Syst, 2015, 28( 2): 737- 745. DOI: 10.5555/2729770.2729793.
    [43]
    XIE ZB, DING L, LI YZ. Computed tomography image features under convolutional neural network algorithm in analysis of inflammatory factor level and prognosis of patients with hepatitis B virus-associated acute-on-chronic liver failure[J]. J Healthc Eng, 2021, 2021: 2110612. DOI: 10.1155/2021/2110612.
    [44]
    VERMA N, GARG P, VALSAN A, et al. Identification of four novel acute-on-chronic liver failure clusters with distinct clinical trajectories and mortality using machine learning methods[J]. Aliment Pharmacol Ther, 2024, 60( 11-12): 1534- 1548. DOI: 10.1111/apt.18274.
    [45]
    LI P, LIANG X, LUO JJ, et al. Omics in acute-on-chronic liver failure[J]. Liver Int, 2025, 45( 3): e15634. DOI: 10.1111/liv.15634.
    [46]
    TAN WT, XIA J, DAN YJ, et al. Genome-wide association study identifies HLA-DR variants conferring risk of HBV-related acute-on-chronic liver failure[J]. Gut, 2018, 67( 4): 757- 766. DOI: 10.1136/gutjnl-2016-313035.
    [47]
    LI J, LIANG X, JIANG J, et al. PBMC transcriptomics identifies immune-metabolism disorder during the development of HBV-ACLF[J]. Gut, 2022, 71( 1): 163- 175. DOI: 10.1136/gutjnl-2020-323395.
    [48]
    HE LL, CAI Q, LIANG X, et al. ETS2 alleviates acute-on-chronic liver failure by suppressing excessive inflammation[J]. J Med Virol, 2023, 95( 4): e28710. DOI: 10.1002/jmv.28710.
    [49]
    LIANG X, LI P, JIANG J, et al. Transcriptomics unveils immune metabolic disruption and a novel biomarker of mortality in patients with HBV-related acute-on-chronic liver failure[J]. JHEP Rep, 2023, 5( 9): 100848. DOI: 10.1016/j.jhepr.2023.100848.
    [50]
    YANG H, CAI Q, XIN JJ, et al. SEMA6B induces macrophage-mediated inflammation and hepatocyte apoptosis in hepatitis B virus-related acute-on-chronic liver failure[J]. Theranostics, 2024, 14( 13): 5200- 5218. DOI: 10.7150/thno.97007.
    [51]
    HASSAN HM, LIANG X, XIN JJ, et al. Thrombospondin 1 enhances systemic inflammation and disease severity in acute-on-chronic liver failure[J]. BMC Med, 2024, 22( 1): 95. DOI: 10.1186/s12916-024-03318-x.
    [52]
    LIANG X, LUO JJ, ZHOU Q, et al. Single-cell multimodal analysis reveals the dynamic immunopathogenesis of HBV-ACLF progression[J]. Gut, 2025. DOI: 10.1136/gutjnl-2024-333308.[ Epub ahead of print]
    [53]
    YU X, TIAN W, BAO X, et al. Dissecting the liver inflammation ecosystem identifies annexin A1 as a pro-resolving target for liver failure[J]. Hepatology, 2025. DOI: 10.1097/HEP.0000000000001427.[ Epub ahead of print]
    [54]
    SUN ZY, LIU XL, WU DX, et al. Circulating proteomic panels for diagnosis and risk stratification of acute-on-chronic liver failure in patients with viral hepatitis B[J]. Theranostics, 2019, 9( 4): 1200- 1214. DOI: 10.7150/thno.31991.
    [55]
    ZHANG Y, TAN WT, WANG XB, et al. Metabolic biomarkers significantly enhance the prediction of HBV-related ACLF occurrence and outcomes[J]. J Hepatol, 2023, 79( 5): 1159- 1171. DOI: 10.1016/j.jhep.2023.07.011.
    [56]
    ZHANG IW, CURTO A, LÓPEZ-VICARIO C, et al. Mitochondrial dysfunction governs immunometabolism in leukocytes of patients with acute-on-chronic liver failure[J]. J Hepatol, 2022, 76( 1): 93- 106. DOI: 10.1016/j.jhep.2021.08.009.
    [57]
    SOLÉ C, GUILLY S, SILVA K DA, et al. Alterations in gut microbiome in cirrhosis as assessed by quantitative metagenomics: Relationship with acute-on-chronic liver failure and prognosis[J]. Gastroenterology, 2021, 160( 1): 206- 218. e 13. DOI: 10.1053/j.gastro.2020.08.054.
    [58]
    WIEST IC, WOLF F, LEßMANN ME, et al. LLM-AIx: An open source pipeline for Information Extraction from unstructured medical text based on privacy preserving Large Language Models[J]. medRxiv, 2024. DOI: 10.1101/2024.09.02.24312917.
    [59]
    CLUSMANN J, BALAGUER-MONTERO M, BASSEGODA O, et al. The barriers for uptake of artificial intelligence in hepatology and how to overcome them[J]. J Hepatol, 2025. DOI: 10.1016/j.jhep.2025.07.003.[ Epub ahead of print]
    [60]
    BHAT M, RABINDRANATH M, CHARA BS, et al. Artificial intelligence, machine learning, and deep learning in liver transplantation[J]. J Hepatol, 2023, 78( 6): 1216- 1233. DOI: 10.1016/j.jhep.2023.01.006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(3)

    Article Metrics

    Article views (3) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return