| [1] |
SCHATTENBERG JM, CHALASANI N, ALKHOURI N. Artificial intelligence applications in hepatology[J]. Clin Gastroenterol Hepatol, 2023, 21( 8): 2015- 2025. DOI: 10.1016/j.cgh.2023.04.007.
|
| [2] |
CAZZANIGA G, L'IMPERIO V, BONOLDI E, et al. Automating liver biopsy segmentation with a robust, open-source tool for pathology research: The HOTSPoT model[J]. NPJ Digit Med, 2025, 8( 1): 455. DOI: 10.1038/s41746-025-01870-1.
|
| [3] |
WAQAS A, BUI MM, GLASSY EF, et al. Revolutionizing digital pathology with the power of generative artificial intelligence and foundation models[J]. Lab Invest, 2023, 103( 11): 100255. DOI: 10.1016/j.labinv.2023.100255.
|
| [4] |
HE R, SARWAL V, QIU XR, et al. Generative AI models in time-varying biomedical data: Scoping review[J]. J Med Internet Res, 2025, 27: e59792. DOI: 10.2196/59792.
|
| [5] |
BOSMA JS, DERCKSEN K, BUILTJES L, et al. The DRAGON benchmark for clinical NLP[J]. NPJ Digit Med, 2025, 8: 289. DOI: 10.1038/s41746-025-01626-x.
|
| [6] |
FEI H, REN YF, ZHANG Y, et al. Enriching contextualized language model from knowledge graph for biomedical information extraction[J]. Brief Bioinform, 2021, 22( 3): bbaa110. DOI: 10.1093/bib/bbaa110.
|
| [7] |
KALYAN KS, SANGEETHA S. BertMCN: Mapping colloquial phrases to standard medical concepts using BERT and highway network[J]. Artif Intell Med, 2021, 112: 102008. DOI: 10.1016/j.artmed.2021.102008.
|
| [8] |
OZONZE O, SCOTT PJ, HOPGOOD AA. Automating electronic health record data quality assessment[J]. J Med Syst, 2023, 47( 1): 23. DOI: 10.1007/s10916-022-01892-2.
|
| [9] |
SCOTT HF, BRILLI RJ, PAUL R, et al. Evaluating pediatric sepsis definitions designed for electronic health record extraction and multicenter quality improvement[J]. Crit Care Med, 2020, 48( 10): e916- e926. DOI: 10.1097/CCM.0000000000004505.
|
| [10] |
RISKIN DJ, MONDA KL, GAGNE JJ, et al. Implementing accuracy, completeness, and traceability for data reliability[J]. JAMA Netw Open, 2025, 8( 3): e250128. DOI: 10.1001/jamanetworkopen.2025.0128.
|
| [11] |
RIZZO M. AI in neurology: Everything, everywhere, all at once part 3: Surveillance, synthesis, simulation, and systems[J]. Ann Neurol, 2025, 98( 4): 651- 667. DOI: 10.1002/ana.27230.
|
| [12] |
STETSON PD, CHOY J, SUMMERVILLE N, et al. Responsible artificial intelligence governance in oncology[J]. NPJ Digit Med, 2025, 8( 1): 407. DOI: 10.1038/s41746-025-01794-w.
|
| [13] |
KOUTSOUBIS N, WAQAS A, YILMAZ Y, et al. Privacy-preserving federated learning and uncertainty quantification in medical imaging[J]. Radiol Artif Intell, 2025, 7( 4): e240637. DOI: 10.1148/ryai.240637.
|
| [14] |
LIU JH, CHEN C, QU YY, et al. RASS: Enabling privacy-preserving and authentication in online AI-driven healthcare applications[J]. ISA Trans, 2023, 141: 20- 29. DOI: 10.1016/j.isatra.2023.03.049.
|
| [15] |
LI J, CAIRNS BJ, LI JS, et al. Generating synthetic mixed-type longitudinal electronic health records for artificial intelligent applications[J]. NPJ Digit Med, 2023, 6( 1): 98. DOI: 10.1038/s41746-023-00834-7.
|
| [16] |
ISGUT M, GLOSTER L, CHOI K, et al. Systematic review of advanced AI methods for improving healthcare data quality in post COVID-19 era[J]. IEEE Rev Biomed Eng, 2023, 16: 53- 69. DOI: 10.1109/RBME.2022.3216531.
|
| [17] |
ANAYA G, PETTEE GABRIEL K, ST-ONGE MP, et al. Optimal instruments for measurement of dietary intake, physical activity, and sleep among adults in population-based studies: Report of a national heart, lung, and blood institute workshop[J]. J Am Heart Assoc, 2024, 13( 21): e035818. DOI: 10.1161/JAHA.124.035818.
|
| [18] |
BRADSHAW TJ, BROSCH-LENZ J, URIBE C, et al. Recommendations for standardizing nuclear medicine terminology and data in the era of theranostics and artificial intelligence[J]. J Nucl Med, 2025, 66( 9): 1471- 1479. DOI: 10.2967/jnumed.124.269424.
|
| [19] |
COSTELLO J, KAUR M, REFORMAT MZ, et al. Leveraging knowledge graphs and natural language processing for automated web resource labeling and knowledge mobilization in neurodevelopmental disorders: Development and usability study[J]. J Med Internet Res, 2023, 25: e45268. DOI: 10.2196/45268.
|
| [20] |
SHI J, BENDIG D, VOLLMAR HC, et al. Mapping the bibliometrics landscape of AI in medicine: Methodological study[J]. J Med Internet Res, 2023, 25: e45815. DOI: 10.2196/45815.
|
| [21] |
EDFELDT K, EDWARDS AM, ENGKVIST O, et al. A data science roadmap for open science organizations engaged in early-stage drug discovery[J]. Nat Commun, 2024, 15( 1): 5640. DOI: 10.1038/s41467-024-49777-x.
|
| [22] |
XI JN, SUN DH, CHANG C, et al. An omics-to-omics joint knowledge association subtensor model for radiogenomics cross-modal modules from genomics and ultrasonic images of breast cancers[J]. Comput Biol Med, 2023, 155: 106672. DOI: 10.1016/j.compbiomed.2023.106672.
|
| [23] |
AN D, LIM M, LEE S. Challenges for data quality in the clinical data life cycle: Systematic review[J]. J Med Internet Res, 2025, 27: e60709. DOI: 10.2196/60709.
|
| [24] |
GIEREND K, FREIESLEBEN S, KADIOGLU D, et al. The status of data management practices across German medical data integration centers: Mixed methods study[J]. J Med Internet Res, 2023, 25: e48809. DOI: 10.2196/48809.
|
| [25] |
LIGHTERNESS A, ADCOCK M, SCANLON LA, et al. Data quality-driven improvement in health care: Systematic literature review[J]. J Med Internet Res, 2024, 26: e57615. DOI: 10.2196/57615.
|
| [26] |
SYED R, EDEN R, MAKASI T, et al. Digital health data quality issues: Systematic review[J]. J Med Internet Res, 2023, 25: e42615. DOI: 10.2196/42615.
|
| [27] |
HE YT, HUANG FX, JIANG XR, et al. Foundation model for advancing healthcare: Challenges, opportunities and future directions[J]. IEEE Rev Biomed Eng, 2025, 18: 172- 191. DOI: 10.1109/RBME.2024.3496744.
|
| [28] |
SCHWABE D, BECKER K, SEYFERTH M, et al. The METRIC-framework for assessing data quality for trustworthy AI in medicine: A systematic review[J]. NPJ Digit Med, 2024, 7( 1): 203. DOI: 10.1038/s41746-024-01196-4.
|
| [29] |
TIWARI P, ZHU HY, PANDEY HM. DAPath: Distance-aware knowledge graph reasoning based on deep reinforcement learning[J]. Neural Netw, 2021, 135: 1- 12. DOI: 10.1016/j.neunet.2020.11.012.
|
| [30] |
PENG CY, XIA F, NASERIPARSA M, et al. Knowledge graphs: Opportunities and challenges[J]. Artif Intell Rev, 2023, 56( 11): 13071- 13102. DOI: 10.1007/s10462-023-10465-9.
|
| [31] |
BHUYAN SS, SATEESH V, MUKUL N, et al. Generative artificial intelligence use in healthcare: Opportunities for clinical excellence and administrative efficiency[J]. J Med Syst, 2025, 49( 1): 10. DOI: 10.1007/s10916-024-02136-1.
|
| [32] |
HE JZ, TIBO A, JANET JP, et al. Evaluation of reinforcement learning in transformer-based molecular design[J]. J Cheminform, 2024, 16( 1): 95. DOI: 10.1186/s13321-024-00887-0.
|
| [33] |
ATANCE SR, DIEZ JV, ENGKVIST O, et al. De novo drug design using reinforcement learning with graph-based deep generative models[J]. J Chem Inf Model, 2022, 62( 20): 4863- 4872. DOI: 10.1021/acs.jcim.2c00838.
|
| [34] |
PARK J, AHN J, CHOI J, et al. Mol-AIR: Molecular reinforcement learning with adaptive intrinsic rewards for goal-directed molecular generation[J]. J Chem Inf Model, 2025, 65( 5): 2283- 2296. DOI: 10.1021/acs.jcim.4c01669.
|
| [35] |
YIM WW, FU YJ, ABACHA A BEN, et al. Aci-bench: A novel ambient clinical intelligence dataset for benchmarking automatic visit note generation[J]. Sci Data, 2023, 10: 586. DOI: 10.1038/s41597-023-02487-3.
|
| [36] |
KERNBERG A, GOLD JA, MOHAN V. Using ChatGPT-4 to create structured medical notes from audio recordings of physician-patient encounters: Comparative study[J]. J Med Internet Res, 2024, 26: e54419. DOI: 10.2196/54419.
|
| [37] |
RAO VM, HLA M, MOOR M, et al. Multimodal generative AI for medical image interpretation[J]. Nature, 2025, 639( 8056): 888- 896. DOI: 10.1038/s41586-025-08675-y.
|
| [38] |
DINANI AM, KOWDLEY KV, NOUREDDIN M. Application of artificial intelligence for diagnosis and risk stratification in NAFLD and NASH: The state of the art[J]. Hepatology, 2021, 74( 4): 2233- 2240. DOI: 10.1002/hep.31869.
|
| [39] |
AHN JC, RATTAN P, STARLINGER P, et al. AI-Cirrhosis-ECG(ACE) score for predicting decompensation and liver outcomes[J]. JHEP Rep, 2025, 7( 5): 101356. DOI: 10.1016/j.jhepr.2025.101356.
|
| [40] |
SU GL, ZHANG P, BELANCOURT PX, et al. Incorporation of quantitative imaging data using artificial intelligence improves risk prediction in veterans with liver disease[J]. Hepatology, 2024, 80( 4): 928- 936. DOI: 10.1097/HEP.0000000000000750.
|
| [41] |
ZHAI YP, HAI DR, ZENG L, et al. Artificial intelligence-based evaluation of prognosis in cirrhosis[J]. J Transl Med, 2024, 22( 1): 933. DOI: 10.1186/s12967-024-05726-2.
|
| [42] |
SPANN A, STRAUSS AT, DAVIS SE, et al. The role of artificial intelligence in chronic liver diseases and liver transplantation[J]. Gastroenterology, 2025, 169( 3): 456- 470. DOI: 10.1053/j.gastro.2025.05.012.
|
| [43] |
FUJIWARA N, FOBAR AJ, RAMAN I, et al. A blood-based prognostic liver secretome signature predicts long-term risk of hepatic decompensation in cirrhosis[J]. Clin Gastroenterol Hepatol, 2022, 20( 5): e1188- e1191. DOI: 10.1016/j.cgh.2021.03.019.
|
| [44] |
BEDDIAR DR, OUSSALAH M, SEPPÄNEN T. Automatic captioning for medical imaging(MIC): A rapid review of literature[J]. Artif Intell Rev, 2023, 56( 5): 4019- 4076. DOI: 10.1007/s10462-022-10270-w.
|
| [45] |
FINK A, RAU A, REISERT M, et al. Retrieval-augmented generation with large language models in radiology: From theory to practice[J]. Radiol Artif Intell, 2025, 7( 4): e240790. DOI: 10.1148/ryai.240790.
|
| [46] |
BELLINI V, RUSSO M, DOMENICHETTI T, et al. Artificial intelligence in operating room management[J]. J Med Syst, 2024, 48( 1): 19. DOI: 10.1007/s10916-024-02038-2.
|
| [47] |
XU ZJ, WANG X, ZENG SS, et al. Applying artificial intelligence for cancer immunotherapy[J]. Acta Pharm Sin B, 2021, 11( 11): 3393- 3405. DOI: 10.1016/j.apsb.2021.02.007.
|
| [48] |
MUKHERJEE J, SHARMA R, DUTTA P, et al. Artificial intelligence in healthcare: A mastery[J]. Biotechnol Genet Eng Rev, 2024, 40( 3): 1659- 1708. DOI: 10.1080/02648725.2023.2196476.
|
| [49] |
MOROSKY CM, BAECHER-LIND L, CHEN KT, et al. Practical applications of artificial intelligence chatbots in obstetrics and gynecology medical education[J]. Am J Obstet Gynecol, 2025, 233( 1): 4- 11. DOI: 10.1016/j.ajog.2025.04.021.
|
| [50] |
KARARGYRIS A, UMETON R, SHELLER MJ, et al. Federated benchmarking of medical artificial intelligence with MedPerf[J]. Nat Mach Intell, 2023, 5( 7): 799- 810. DOI: 10.1038/s42256-023-00652-2.
|