| [1] |
CHEN WQ, CHIANG CL, DAWSON LA. Efficacy and safety of radiotherapy for primary liver cancer[J]. Chin Clin Oncol, 2021, 10( 1): 9. DOI: 10.21037/cco-20-89.
|
| [2] |
ZHANG CH, CHENG YF, ZHANG S, et al. Changing epidemiology of hepatocellular carcinoma in Asia[J]. Liver Int, 2022, 42( 9): 2029- 2041. DOI: 10.1111/liv.15251.
|
| [3] |
ZHANG ZZ, WANG MX, WU YF, et al. Epidemiological and clinical characteristics of hepatocellular carcinoma in Xiamen[J]. Cancer Epidemiol, 2024, 93: 102691. DOI: 10.1016/j.canep.2024.102691.
|
| [4] |
CAPASSO M, COSSIGA V, GUARINO M, et al. The role of hepatitis viruses as drivers of hepatocancerogenesis[J]. Cancers, 2024, 16( 8): 1505. DOI: 10.3390/cancers16081505.
|
| [5] |
ZHANG H, FU Y, TAN BB, et al. Clinical application and progress of yttrium 90 microsphere selective internal radiation therapy in primary hepatic cancer[J]. Chin J Dig Surg, 2024, 23( 2): 242- 247. DOI: 10.3760/cma.j.cn115610-20231208-00242.
张辉, 付颖, 谭斌彬, 等. 钇-90微球选择性内放射治疗在原发性肝癌中的临床应用及进展[J]. 中华消化外科杂志, 2024, 23( 2): 242- 247. DOI: 10.3760/cma.j.cn115610-20231208-00242.
|
| [6] |
FANG ZY, JIN S, LI G. Efficacy and prognostic factors of intensity-modulated radiotherapy for large primary hepatocellular carcinoma[J]. J Clin Hepatol, 2015, 31( 6): 886- 890. DOI: 10.3969/j.issn.1001-5256.2015.06.014.
方子燕, 金帅, 黎功. 原发性大肝癌调强放疗的疗效及预后分析[J]. 临床肝胆病杂志, 2015, 31( 6): 886- 890. DOI: 10.3969/j.issn.1001-5256.2015.06.014.
|
| [7] |
CUNEO KC, HERR DJ. Advances in radiation therapy for primary liver cancer[J]. Surg Oncol Clin N Am, 2023, 32( 3): 415- 432. DOI: 10.1016/j.soc.2023.02.002.
|
| [8] |
DIONISI F, SCARTONI D, FRACCHIOLLA F, et al. Proton therapy in the treatment of hepatocellular carcinoma[J]. Front Oncol, 2022, 12: 959552. DOI: 10.3389/fonc.2022.959552.
|
| [9] |
LING R, WANG JZ, FANG Y, et al. HDAC-an important target for improving tumor radiotherapy resistance[J]. Front Oncol, 2023, 13: 1193637. DOI: 10.3389/fonc.2023.1193637.
|
| [10] |
JAGASIA S, TASCI E, ZHUGE Y, et al. Identifying patients suitable for targeted adjuvant therapy: Advances in the field of developing biomarkers for tumor recurrence following irradiation[J]. Expert Rev Precis Med Drug Dev, 2023, 8( 1): 33- 42. DOI: 10.1080/23808993.2023.2276927.
|
| [11] |
MIR SM, ALIARAB A, GOODARZI G, et al. Melatonin: A smart molecule in the DNA repair system[J]. Cell Biochem Funct, 2022, 40( 1): 4- 16. DOI: 10.1002/cbf.3672.
|
| [12] |
HUANG CY, LAI ZY, HSU TJ, et al. Boron neutron capture therapy eliminates radioresistant liver cancer cells by targeting DNA damage and repair responses[J]. J Hepatocell Carcinoma, 2022, 9: 1385- 1401. DOI: 10.2147/jhc.s383959.
|
| [13] |
BYUN HK, KIM C, SEONG J. Carbon ion radiotherapy in the treatment of hepatocellular carcinoma[J]. Clin Mol Hepatol, 2023, 29( 4): 945- 957. DOI: 10.3350/cmh.2023.0217.
|
| [14] |
BEDOLLA N, LIU L, XIE Q, et al. Quercetin regulates sensitivity to X-ray radiation of hepatocellular carcinoma through miR-216a-3p[J]. Biomol Biomed, 2025, 25( 4): 833- 849. DOI: 10.17305/bb.2024.11125.
|
| [15] |
JIN Q, HU H, YAN SQ, et al. lncRNA MIR22HG-derived miR-22-5p enhances the radiosensitivity of hepatocellular carcinoma by increasing histone acetylation through the inhibition of HDAC2 activity[J]. Front Oncol, 2021, 11: 572585. DOI: 10.3389/fonc.2021.572585.
|
| [16] |
JIA HJ, WEI PK, ZHOU SJ, et al. Attenuated Salmonella carrying siRNA-PD-L1 and radiation combinatorial therapy induces tumor regression on HCC through T cell-mediated immuno-enhancement[J]. Cell Death Discov, 2023, 9: 318. DOI: 10.1038/s41420-023-01603-x.
|
| [17] |
JENG KS, CHANG CF, SHEEN IS, et al. Cellular and molecular biology of cancer stem cells of hepatocellular carcinoma[J]. Int J Mol Sci, 2023, 24( 2): 1417. DOI: 10.3390/ijms24021417.
|
| [18] |
KABAKOV AE, YAKIMOVA AO. Hypoxia-induced cancer cell responses driving radioresistance of hypoxic tumors: Approaches to targeting and radiosensitizing[J]. Cancers, 2021, 13( 5): 1102. DOI: 10.3390/cancers13051102.
|
| [19] |
WEI HJ, WANG CR, CROCE CM, et al. p62/SQSTM1 synergizes with autophagy for tumor growth in vivo[J]. Genes Dev, 2014, 28( 11): 1204- 1216. DOI: 10.1101/gad.237354.113.
|
| [20] |
KIM W, LEE S, SEO D, et al. Cellular stress responses in radiotherapy[J]. Cells, 2019, 8( 9): 1105. DOI: 10.3390/cells8091105.
|
| [21] |
YAO QW, ZHENG R, XIE GZ, et al. Late-responding normal tissue cells benefit from high-precision radiotherapy with prolonged fraction delivery times via enhanced autophagy[J]. Sci Rep, 2015, 5: 9119. DOI: 10.1038/srep09119.
|
| [22] |
ZHENG W, SHEN GL, XU KY, et al. Lnc524369 promotes hepatocellular carcinoma progression and predicts poor survival by activating YWHAZ-RAF1 signaling[J]. World J Gastrointest Oncol, 2022, 14( 1): 253- 264. DOI: 10.4251/wjgo.v14.i1.253.
|
| [23] |
SAKAGUCHI H, TSUCHIYA H, KITAGAWA Y, et al. NEAT1 confers radioresistance to hepatocellular carcinoma cells by inducing autophagy through GABARAP[J]. Int J Mol Sci, 2022, 23( 2): 711. DOI: 10.3390/ijms23020711.
|
| [24] |
DAI XF, WANG DJ, ZHANG JY. Programmed cell death, redox imbalance, and cancer therapeutics[J]. Apoptosis, 2021, 26( 7-8): 385- 414. DOI: 10.1007/s10495-021-01682-0.
|
| [25] |
GHAHREMANIFARD P, CHANDA A, BONNI S, et al. TGF-β mediated immune evasion in cancer-spotlight on cancer-associated fibroblasts[J]. Cancers(Basel), 2020, 12( 12): 3650. DOI: 10.3390/cancers12123650.
|
| [26] |
CUKIERMAN E. A reflection on how carcinoma-associated fibroblasts were recognized as active participants of epithelial tumorigenesis[J]. Cancer Res, 2021, 81( 18): 4668- 4670. DOI: 10.1158/0008-5472.CAN-21-2553.
|
| [27] |
KIM TW. Fisetin, an anti-inflammatory agent, overcomes radioresistance by activating the PERK-ATF4-CHOP axis in liver cancer[J]. Int J Mol Sci, 2023, 24( 10): 9076. DOI: 10.3390/ijms24109076.
|
| [28] |
XU YY, CHEN YH, JIN J, et al. Modulating tumour vascular normalisation using triptolide-loaded NGR-functionalized liposomes for enhanced cancer radiotherapy[J]. J Liposome Res, 2023, 33( 3): 251- 257. DOI: 10.1080/08982104.2022.2161095.
|
| [29] |
LIANG HZ, SHEN XL. LXR activation radiosensitizes non-small cell lung cancer by restricting myeloid-derived suppressor cells[J]. Biochem Biophys Res Commun, 2020, 528( 2): 330- 335. DOI: 10.1016/j.bbrc.2020.04.137.
|
| [30] |
MCANDREWS KM, CHEN Y, DARPOLOR JK, et al. Identification of functional heterogeneity of carcinoma-associated fibroblasts with distinct IL6-mediated therapy resistance in pancreatic cancer[J]. Cancer Discov, 2022, 12( 6): 1580- 1597. DOI: 10.1158/2159-8290.CD-20-1484.
|
| [31] |
DUNLOCK VE. Tetraspanin CD53: An overlooked regulator of immune cell function[J]. Med Microbiol Immunol, 2020, 209( 4): 545- 552. DOI: 10.1007/s00430-020-00677-z.
|
| [32] |
DAWSON HD, SANG YM, LUNNEY JK. Porcine cytokines, chemokines and growth factors: 2019 update[J]. Res Vet Sci, 2020, 131: 266- 300. DOI: 10.1016/j.rvsc.2020.04.022.
|
| [33] |
LIU C, LIU XM, ZHOU HY, et al. Growth factors and cytokines involved in liver regeneration[J]. Eur Cytokine Netw, 2023, 34( 4): 38- 45. DOI: 10.1684/ecn.2023.0483.
|
| [34] |
WANG YH, CHEN ZM, YIN YC, et al. Mechanism and application progress of sensitivity regulation of tumor associated macrophages in radiotherapy[J]. Trauma Crit Care Med, 2024, 12( 3): 182- 185, 190. DOI: 10.16048/j.issn.2095-5561.2024.03.13.
王禹杭, 陈志明, 殷雨成, 等. 肿瘤相关巨噬细胞放射治疗敏感性调节机制与应用进展[J]. 创伤与急危重病医学, 2024, 12( 3): 182- 185, 190. DOI: 10.16048/j.issn.2095-5561.2024.03.13.
|
| [35] |
PENG C, XU YL, WU J, et al. TME-related biomimetic strategies against cancer[J]. Int J Nanomed, 2024, 19: 109- 135. DOI: 10.2147/ijn.s441135.
|
| [36] |
ZHAO W, HU H, MO Q, et al. Function and mechanism of combined PARP-1 and BRCA genes in regulating the radiosensitivity of breast cancer cells[J]. Int J Clin Exp Pathol, 2019, 12( 10): 3915- 3920.
|
| [37] |
SATO H, OKONOGI N, NAKANO T. Rationale of combination of anti-PD-1/PD-L1 antibody therapy and radiotherapy for cancer treatment[J]. Int J Clin Oncol, 2020, 25( 5): 801- 809. DOI: 10.1007/s10147-020-01666-1.
|
| [38] |
YANG YJ, KE TY, LIU SX, et al. Synergistic sensitization of apatinib mesylate and radiotherapy on hepatocarcinoma cells in vitro[J]. J Jilin Univ(Med Ed), 2024, 50( 4): 1009- 1015. DOI: 10.13481/j.1671-587X.202404015.
杨永净, 柯天洋, 刘士新, 等. 甲磺酸阿帕替尼联合放疗对肝癌HepG2细胞的体外协同增敏作用[J]. 吉林大学学报(医学版), 2024, 50( 4): 1009- 1015. DOI: 10.13481/j.1671-587X.202404015.
|
| [39] |
CHEN YH, WEI MF, WANG CW, et al. Dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor is an effective radiosensitizer for colorectal cancer[J]. Cancer Lett, 2015, 357( 2): 582- 590. DOI: 10.1016/j.canlet.2014.12.015.
|
| [40] |
YOSHIDA A, KITAYAMA Y, HAYAKAWA N, et al. Biocompatible polymer-modified gold nanocomposites of different shapes as radiation sensitizers[J]. Biomater Sci, 2022, 10( 10): 2665- 2672. DOI: 10.1039/d2bm00174h.
|
| [41] |
SEBASTIAN AM, PETER D. Artificial intelligence in cancer research: Trends, challenges and future directions[J]. Life, 2022, 12( 12): 1991. DOI: 10.3390/life12121991.
|
| [42] |
BORCZYK M, PIECHOTA M, RODRIGUEZ PARKITNA J, et al. Prospects for personalization of depression treatment with genome sequencing[J]. Br J Pharmacol, 2022, 179( 17): 4220- 4232. DOI: 10.1111/bph.15470.
|
| [43] |
HORLAIT M, BAES S, DE REGGE M, et al. Understanding the complexity, underlying processes, and influencing factors for optimal multidisciplinary teamwork in hospital-based cancer teams: A systematic integrative review[J]. Cancer Nurs, 2021, 44( 6): E476- E492. DOI: 10.1097/NCC.0000000000000923.
|
| [44] |
BARRAULT-COUCHOURON M, MICHELI N, SOUBEYRAN P. Exploring determinants of interdisciplinary collaboration within a geriatric oncology setting: A mixed-method study[J]. Cancers, 2022, 14( 6): 1386. DOI: 10.3390/cancers14061386.
|