中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 41 Issue 4
Apr.  2025
Turn off MathJax
Article Contents

The characteristics and mechanism of dynamic changes of different components in microenvironment in regulating the progression of liver fibrosis

DOI: 10.12449/JCH250423
Research funding:

National Natural Science Foundation of China (82060862);

Yunnan Provincial Science and Technology Department-Applied Basic Research Joint Special Funds of Chinese Medicine (202101AZ070001-003);

Yunnan Applied Basic Research Program (202301AT070098)

More Information
  • Corresponding author: SHI Xinan, 17387105981@163.com (ORCID: 0000-0002-8454-1845)
  • Received Date: 2024-07-16
  • Accepted Date: 2024-10-30
  • Published Date: 2025-04-25
  • The liver has diverse functions such as metabolism, detoxification, and immune defense, and the maintenance of hepatic microenvironment homeostasis is crucial for overall bodily health. The hepatic microenvironment consists of the components such as parenchymal cells, non-parenchymal cells, and non-cellular components. Chronic inflammatory responses induced by various etiological factors may promote the formation and progression of liver fibrosis. During the dynamic progression of liver fibrosis, from the early to advanced stages, various components within the hepatic microenvironment undergo a series of changes, which can promote the malignant progression of liver fibrosis. An in-depth exploration of the mechanisms underlying such changes in each component of the liver fibrosis microenvironment is of great significance for understanding the pathogenesis of liver fibrosis and discovering potential treatment strategies.

     

  • loading
  • [1]
    GADD VL, ALEKSIEVA N, FORBES SJ. Epithelial plasticity during liver injury and regeneration[J]. Cell Stem Cell, 2020, 27( 4): 557- 573. DOI: 10.1016/j.stem.2020.08.016.
    [2]
    DRISKILL JH, PAN DJ. The hippo pathway in liver homeostasis and pathophysiology[J]. Annu Rev Pathol, 2021, 16: 299- 322. DOI: 10.1146/annurev-pathol-030420-105050.
    [3]
    BATALLER R, BRENNER DA. Liver fibrosis[J]. J Clin Invest, 2005, 115( 2): 209- 218. DOI: 10.1172/jci24282.
    [4]
    KUMAR S, DUAN QH, WU RX, et al. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis[J]. Adv Drug Deliv Rev, 2021, 176: 113869. DOI: 10.1016/j.addr.2021.113869.
    [5]
    WU BC, SODJI QH, OYELERE AK. Inflammation, fibrosis and cancer: Mechanisms, therapeutic options and challenges[J]. Cancers(Basel), 2022, 14( 3): 552. DOI: 10.3390/cancers14030552.
    [6]
    LI Y, LU LG, CAI XB. Liver regeneration and cell transplantation for end-stage liver disease[J]. Biomolecules, 2021, 11( 12): 1907. DOI: 10.3390/biom11121907.
    [7]
    DHAR D, BAGLIERI J, KISSELEVA T, et al. Mechanisms of liver fibrosis and its role in liver cancer[J]. Exp Biol Med(Maywood), 2020, 245( 2): 96- 108. DOI: 10.1177/1535370219898141.
    [8]
    HIGASHI T, FRIEDMAN SL, HOSHIDA Y. Hepatic stellate cells as key target in liver fibrosis[J]. Adv Drug Deliv Rev, 2017, 121: 27- 42. DOI: 10.1016/j.addr.2017.05.007.
    [9]
    MATSUDA M, SEKI E. Hepatic stellate cell-macrophage crosstalk in liver fibrosis and carcinogenesis[J]. Semin Liver Dis, 2020, 40( 3): 307- 320. DOI: 10.1055/s-0040-1708876.
    [10]
    de HAAN W, DHEEDENE W, APELT K, et al. Endothelial Zeb2 preserves the hepatic angioarchitecture and protects against liver fibrosis[J]. Cardiovasc Res, 2022, 118( 5): 1262- 1275. DOI: 10.1093/cvr/cvab148.
    [11]
    ROEHLEN N, CROUCHET E, BAUMERT TF. Liver fibrosis: Mechanistic concepts and therapeutic perspectives[J]. Cells, 2020, 9( 4): 875. DOI: 10.3390/cells9040875.
    [12]
    MURAO A, AZIZ M, WANG HC, et al. Release mechanisms of major DAMPs[J]. Apoptosis, 2021, 26( 3-4): 152- 162. DOI: 10.1007/s10495-021-01663-3.
    [13]
    SHI JJ, ZHAO Y, WANG K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526( 7575): 660- 665. DOI: 10.1038/nature15514.
    [14]
    HE S, TANG SL. WNT/β‍-catenin signaling in the development of liver cancers[J]. Biomed Pharmacother, 2020, 132: 110851. DOI: 10.1016/j.biopha.2020.110851.
    [15]
    MACDONALD BT, TAMAI K, HE X. Wnt/beta-catenin signaling: Components, mechanisms, and diseases[J]. Dev Cell, 2009, 17( 1): 9- 26. DOI: 10.1016/j.devcel.2009.06.016.
    [16]
    TESTERINK N, AJAT M, HOUWELING M, et al. Replacement of retinyl esters by polyunsaturated triacylglycerol species in lipid droplets of hepatic stellate cells during activation[J]. PLoS One, 2012, 7( 4): e34945. DOI: 10.1371/journal.pone.0034945.
    [17]
    HERNANDEZ-GEA V, FRIEDMAN SL. Pathogenesis of liver fibrosis[J]. Annu Rev Pathol, 2011, 6: 425- 456. DOI: 10.1146/annurev-pathol-011110-130246.
    [18]
    MOUNTFORD S, EFFENBERGER M, NOLL-PUCHTA H, et al. Modulation of Liver Inflammation and Fibrosis by Interleukin-37[J]. Front Immunol, 2021, 12: 603649. DOI: 10.3389/fimmu.2021.603649.
    [19]
    YU YS, LIU Y, AN WS, et al. STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis[J]. J Clin Invest, 2019, 129( 2): 546- 555. DOI: 10.1172/JCI121842.
    [20]
    FILLIOL A, PIQUET-PELLORCE C, RAGUÉNÈS-NICOL C, et al. RIPK1 protects hepatocytes from Kupffer cells-mediated TNF-induced apoptosis in mouse models of PAMP-induced hepatitis[J]. J Hepatol, 2017, 66( 6): 1205- 1213. DOI: 10.1016/j.jhep.2017.01.005.
    [21]
    MAY D, DJONOV V, ZAMIR G, et al. A transgenic model for conditional induction and rescue of portal hypertension reveals a role of VEGF-mediated regulation of sinusoidal fenestrations[J]. PLoS One, 2011, 6( 7): e21478. DOI: 10.1371/journal.pone.0021478.
    [22]
    FABREGAT I, CABALLERO-DÍAZ D. Transforming growth factor-β- induced cell plasticity in liver fibrosis and hepatocarcinogenesis[J]. Front Oncol, 2018, 8: 357. DOI: 10.3389/fonc.2018.00357.
    [23]
    RODRÍGUEZ-RODRÍGUEZ DR, LOZANO-SEPULVEDA SA, DELGADO-MONTEMAYOR C, et al. Turnera diffusa extract attenuates profibrotic, extracellular matrix and mitochondrial markers in activated human hepatic stellate cells(HSC)[J]. Ann Hepatol, 2021, 22: 100281. DOI: 10.1016/j.aohep.2020.10.009.
    [24]
    YANG CM, YANG CC, HSU WH, et al. Tumor necrosis factor-α-induced C-C motif chemokine ligand 20 expression through TNF receptor 1-dependent activation of EGFR/p38 MAPK and JNK1/2/FoxO1 or the NF-κB pathway in human cardiac fibroblasts[J]. Int J Mol Sci, 2022, 23( 16): 9086. DOI: 10.3390/ijms23169086.
    [25]
    YAMASHITA M, PASSEGUÉ E. TNF-α coordinates hematopoietic stem cell survival and myeloid regeneration[J]. Cell Stem Cell, 2019, 25( 3): 357- 372. e 7. DOI: 10.1016/j.stem.2019.05.019.
    [26]
    SCHMIDT-ARRAS D, ROSE-JOHN S. IL-6 pathway in the liver: From physiopathology to therapy[J]. J Hepatol, 2016, 64( 6): 1403- 1415. DOI: 10.1016/j.jhep.2016.02.004.
    [27]
    YOUSEFI A, NAJAFI M, MOTAMED F, et al. Association of interleukin-6 and interleukin-1 family gene polymorphisms in autoimmune hepatitis[J]. Ann Hepatol, 2018, 17( 6): 1021- 1025. DOI: 10.5604/01.3001.0012.7202.
    [28]
    KARLMARK KR, WEISKIRCHEN R, ZIMMERMANN HW, et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis[J]. Hepatology, 2009, 50( 1): 261- 274. DOI: 10.1002/hep.22950.
    [29]
    KONG DS, ZHANG ZL, CHEN LP, et al. Curcumin blunts epithelial-mesenchymal transition of hepatocytes to alleviate hepatic fibrosis through regulating oxidative stress and autophagy[J]. Redox Biol, 2020, 36: 101600. DOI: 10.1016/j.redox.2020.101600.
    [30]
    YING HZ, CHEN Q, ZHANG WY, et al. PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics(Review)[J]. Mol Med Rep, 2017, 16( 6): 7879- 7889. DOI: 10.3892/mmr.2017.7641.
    [31]
    WISZNIAK S, SCHWARZ Q. Exploring the intracrine functions of VEGF-A[J]. Biomolecules, 2021, 11( 1): 128. DOI: 10.3390/biom11010128.
    [32]
    ZHOU WC, ZHANG QB, QIAO L. Pathogenesis of liver cirrhosis[J]. World J Gastroenterol, 2014, 20( 23): 7312- 7324. DOI: 10.3748/wjg.v20.i23.7312.
    [33]
    IWAKIRI Y. Pathophysiology of portal hypertension[J]. Clin Liver Dis, 2014, 18( 2): 281- 291. DOI: 10.1016/j.cld.2013.12.001.
    [34]
    GRESSNER AM, WEISKIRCHEN R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets[J]. J Cell Mol Med, 2006, 10( 1): 76- 99. DOI: 10.1111/j.1582-4934.2006.tb00292.x.
    [35]
    WOHLLEBER D, KNOLLE PA. The role of liver sinusoidal cells in local hepatic immune surveillance[J]. Clin Transl Immunology, 2016, 5( 12): e117. DOI: 10.1038/cti.2016.74.
    [36]
    JEONG WI, PARK O, RADAEVA S, et al. STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity[J]. Hepatology, 2006, 44( 6): 1441- 1451. DOI: 10.1002/hep.21419.
    [37]
    MCCONNELL MJ, KOSTALLARI E, IBRAHIM SH, et al. The evolving role of liver sinusoidal endothelial cells in liver health and disease[J]. Hepatology, 2023, 78( 2): 649- 669. DOI: 10.1097/HEP.0000000000000207.
    [38]
    MARTIN IV, BORKHAM-KAMPHORST E, ZOK S, et al. Platelet-derived growth factor(PDGF)‍-C neutralization reveals differential roles of PDGF receptors in liver and kidney fibrosis[J]. Am J Pathol, 2013, 182( 1): 107- 117. DOI: 10.1016/j.ajpath.2012.09.006.
    [39]
    MENG Y, ZHAO T, ZHANG ZY, et al. The role of hepatic microenvironment in hepatic fibrosis development[J]. Ann Med, 2022, 54( 1): 2830- 2844. DOI: 10.1080/07853890.2022.2132418.
    [40]
    DU WJ, ZHEN JH, ZENG ZQ, et al. Expression of interleukin-17 associated with disease progression and liver fibrosis with hepatitis B virus infection: IL-17 in HBV infection[J]. Diagn Pathol, 2013, 8: 40. DOI: 10.1186/1746-1596-8-40.
    [41]
    YANG WC, WANG YX, ZHANG CG, et al. Maresin1 protect against ferroptosis-induced liver injury through ROS inhibition and Nrf2/HO-1/GPX4 activation[J]. Front Pharmacol, 2022, 13: 865689. DOI: 10.3389/fphar.2022.865689.
    [42]
    YUAN SY, WEI C, LIU GF, et al. Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF-1α/SLC7A11 pathway[J]. Cell Prolif, 2022, 55( 1): e13158. DOI: 10.1111/cpr.13158.
    [43]
    NAGARAJA T, CHEN L, BALASUBRAMANIAN A, et al. Correction: Activation of the connective tissue growth factor(CTGF)-transforming growth factor β1(TGF-β1) axis in hepatitis C virus-expressing hepatocytes[J]. PLoS One, 2023, 18( 8): e0290786. DOI: 10.1371/journal.pone.0290786.
    [44]
    LIEPELT A, TACKE F. Stromal cell-derived factor-1(SDF-1) as a target in liver diseases[J]. Am J Physiol Gastrointest Liver Physiol, 2016, 311( 2): G203- G209. DOI: 10.1152/ajpgi.00193.2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(1)

    Article Metrics

    Article views (384) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return