| [1] |
HAN B, ZHENG R, ZENG H, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2020, 4: 47- 53. DOI: 10.1016/j.jncc.2024.01.006.
|
| [2] |
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74( 3): 229- 263. DOI: 10.3322/caac.21834.
|
| [3] |
LENCIONI G, GREGORI A, TOLEDO B, et al. Unravelling the complexities of resistance mechanism in pancreatic cancer: Insights from in vitro and ex-vivo model systems[J]. Semin Cancer Biol, 2024, 106-107: 217- 233. DOI: 10.1016/j.semcancer.2024.09.002.
|
| [4] |
QIAN ZR, RUBINSON DA, NOWAK JA, et al. Association of alterations in main driver genes with outcomes of patients with resected pancreatic ductal adenocarcinoma[J]. JAMA Oncol, 2018, 4( 3): e173420. DOI: 10.1001/jamaoncol.2017.3420.
|
| [5] |
SEKIYA S, FUKUDA J, YAMAMURA R, et al. Drosophila screening identifies dual inhibition of MEK and AURKB as an effective therapy for pancreatic ductal adenocarcinoma[J]. Cancer Res, 2023, 83( 16): 2704- 2715. DOI: 10.1158/0008-5472.CAN-22-3762.
|
| [6] |
RYGAARD J, POULSEN CO. Heterotransplantation of a human malignant tumour to“nude” mice[J]. Acta Pathol Microbiol Scand, 1969, 77( 4): 758- 760. DOI: 10.1111/j.1699-0463.1969.tb04520.x.
|
| [7] |
JANITRI V, ARULJOTHI KN, RAVI MYTHILI VM, et al. The roles of patient-derived xenograft models and artificial intelligence toward precision medicine[J]. MedComm(2020), 2024, 5( 10): e745. DOI: 10.1002/mco2.745.
|
| [8] |
GARCIA PL, MILLER AL, YOON KJ. Patient-derived xenograft models of pancreatic cancer: Overview and comparison with other types of models[J]. Cancers(Basel), 2020, 12( 5): 1327. DOI: 10.3390/cancers12051327.
|
| [9] |
BLANCHARD Z, BROWN EA, GHAZARYAN A, et al. PDX models for functional precision oncology and discovery science[J]. Nat Rev Cancer, 2024. DOI: 10.1038/s41568-024-00779-3.
|
| [10] |
DINIĆ J, JOVANOVIĆ STOJANOV S, DRAGOJ M, et al. Cancer patient-derived cell-based models: Applications and challenges in functional precision medicine[J]. Life(Basel), 2024, 14( 9): 1142. DOI: 10.3390/life14091142.
|
| [11] |
BULLE A, LIU P, SEEHRA K, et al. Combined KRAS-MAPK pathway inhibitors and HER2-directed drug conjugate is efficacious in pancreatic cancer[J]. Nat Commun, 2024, 15( 1): 2503. DOI: 10.1038/s41467-024-46811-w.
|
| [12] |
YANG G, GUAN WF, CAO Z, et al. Integrative genomic analysis of gemcitabine resistance in pancreatic cancer by patient-derived xenograft models[J]. Clin Cancer Res, 2021, 27( 12): 3383- 3396. DOI: 10.1158/1078-0432.CCR-19-3975.
|
| [13] |
LIU XF, KRAWCZYK E, SUPRYNOWICZ FA, et al. Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens[J]. Nat Protoc, 2017, 12( 2): 439- 451. DOI: 10.1038/nprot.2016.174.
|
| [14] |
LEE HS, LEE JS, LEE J, et al. Establishment of pancreatic cancer cell lines with endoscopic ultrasound-guided biopsy via conditionally reprogrammed cell culture[J]. Cancer Med, 2019, 8( 7): 3339- 3348. DOI: 10.1002/cam4.2210.
|
| [15] |
LONG Y, XIE B, SHEN HC, et al. Translation potential and challenges of in vitro and murine models in cancer clinic[J]. Cells, 2022, 11( 23): 3868. DOI: 10.3390/cells11233868.
|
| [16] |
ZHONG MJ, FU LW. Culture and application of conditionally reprogrammed primary tumor cells[J]. Gastroenterol Rep(Oxf), 2020, 8( 3): 224- 233. DOI: 10.1093/gastro/goaa023.
|
| [17] |
LEE HS, KIM E, LEE J, et al. Profiling of conditionally reprogrammed cell lines for in vitro chemotherapy response prediction of pancreatic cancer[J]. EBioMedicine, 2021, 65: 103218. DOI: 10.1016/j.ebiom.2021.103218.
|
| [18] |
BEGLYAROVA N, BANINA E, ZHOU Y, et al. Screening of conditionally reprogrammed patient-derived carcinoma cells identifies ERCC3-MYC interactions as a target in pancreatic cancer[J]. Clin Cancer Res, 2016, 22( 24): 6153- 6163. DOI: 10.1158/1078-0432.CCR-16-0149.
|
| [19] |
SATO T, VRIES RG, SNIPPERT HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459( 7244): 262- 265. DOI: 10.1038/nature07935.
|
| [20] |
GREGGIO C, DE FRANCESCHI F, FIGUEIREDO-LARSEN M, et al. Artificial three-dimensional niches deconstruct pancreas development in vitro[J]. Development, 2013, 140( 21): 4452- 4462. DOI: 10.1242/dev.096628.
|
| [21] |
BOJ SF, HWANG CI, BAKER LA, et al. Organoid models of human and mouse ductal pancreatic cancer[J]. Cell, 2015, 160( 1-2): 324- 338. DOI: 10.1016/j.cell.2014.12.021.
|
| [22] |
LANCASTER MA, KNOBLICH JA. Organogenesis in a dish: Modeling development and disease using organoid technologies[J]. Science, 2014, 345( 6194): 1247125. DOI: 10.1126/science.1247125.
|
| [23] |
PURI S, FOLIAS AE, HEBROK M. Plasticity and dedifferentiation within the pancreas: Development, homeostasis, and disease[J]. Cell Stem Cell, 2015, 16( 1): 18- 31. DOI: 10.1016/j.stem.2014.11.001.
|
| [24] |
SUN JJ, WANG YQ, FU H, et al. Mettl3-mediated m6A methylation controls pancreatic bipotent progenitor fate and islet formation[J]. Diabetes, 2024, 73( 2): 237- 249. DOI: 10.2337/db23-0360.
|
| [25] |
JIANG ZY, WU FJ, LAISE P, et al. Tff2 defines transit-amplifying pancreatic acinar progenitors that lack regenerative potential and are protective against Kras-driven carcinogenesis[J]. Cell Stem Cell, 2023, 30( 8): 1091- 1109. e 7. DOI: 10.1016/j.stem.2023.07.002.
|
| [26] |
FATEHULLAH A, TAN SH, BARKER N. Organoids as an in vitro model of human development and disease[J]. Nat Cell Biol, 2016, 18( 3): 246- 254. DOI: 10.1038/ncb3312.
|
| [27] |
XU HX, JIAO DC, LIU AG, et al. Tumor organoids: Applications in cancer modeling and potentials in precision medicine[J]. J Hematol Oncol, 2022, 15( 1): 58. DOI: 10.1186/s13045-022-01278-4.
|
| [28] |
LIU YX, LI NS, ZHU Y. Pancreatic organoids: A frontier method for investigating pancreatic-related diseases[J]. Int J Mol Sci, 2023, 24( 4): 4027. DOI: 10.3390/ijms24044027.
|
| [29] |
TAKEUCHI K, TABE S, TAKAHASHI K, et al. Incorporation of human iPSC-derived stromal cells creates a pancreatic cancer organoid with heterogeneous cancer-associated fibroblasts[J]. Cell Rep, 2023, 42( 11): 113420. DOI: 10.1016/j.celrep.2023.113420.
|
| [30] |
DUAN XH, ZHANG T, FENG LL, et al. A pancreatic cancer organoid platform identifies an inhibitor specific to mutant KRAS[J]. Cell Stem Cell, 2024, 31( 1): 71- 88. e 8. DOI: 10.1016/j.stem.2023.11.011.
|
| [31] |
ROY S, DUKIC T, KEEPERS Z, et al. SOX2 and OCT4 mediate radiation and drug resistance in pancreatic tumor organoids[J]. Cell Death Discov, 2024, 10( 1): 106. DOI: 10.1038/s41420-024-01871-1.
|
| [32] |
LI YG, TANG SJ, SHI XH, et al. Metabolic classification suggests the GLUT1/ALDOB/G6PD axis as a therapeutic target in chemotherapy-resistant pancreatic cancer[J]. Cell Rep Med, 2023, 4( 9): 101162. DOI: 10.1016/j.xcrm.2023.101162.
|
| [33] |
SHI XH, LI YG, YUAN QY, et al. Integrated profiling of human pancreatic cancer organoids reveals chromatin accessibility features associated with drug sensitivity[J]. Nat Commun, 2022, 13( 1): 2169. DOI: 10.1038/s41467-022-29857-6.
|
| [34] |
BOILÈVE A, CARTRY J, GOUDARZI N, et al. Organoids for functional precision medicine in advanced pancreatic cancer[J]. Gastroenterology, 2024, 167( 5): 961- 976. e 13. DOI: 10.1053/j.gastro.2024.05.032.
|
| [35] |
PARTE S, KAUR AB, NIMMAKAYALA RK, et al. Cancer-associated fibroblast induces acinar-to-ductal cell transdifferentiation and pancreatic cancer initiation via LAMA5/ITGA4 axis[J]. Gastroenterology, 2024, 166( 5): 842- 858. e 5. DOI: 10.1053/j.gastro.2023.12.018.
|
| [36] |
BIFFI G, ONI TE, SPIELMAN B, et al. IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma[J]. Cancer Discov, 2019, 9( 2): 282- 301. DOI: 10.1158/2159-8290.CD-18-0710.
|
| [37] |
MUCCIOLO G, ARAOS HENRÍQUEZ J, JIHAD M, et al. EGFR-activated myofibroblasts promote metastasis of pancreatic cancer[J]. Cancer Cell, 2024, 42( 1): 101- 118. e 11. DOI: 10.1016/j.ccell.2023.12.002.
|
| [38] |
WU YH, HUNG YP, CHIU NC, et al. Correlation between drug sensitivity profiles of circulating tumour cell-derived organoids and clinical treatment response in patients with pancreatic ductal adenocarcinoma[J]. Eur J Cancer, 2022, 166: 208- 218. DOI: 10.1016/j.ejca.2022.01.030.
|
| [39] |
HUANG LX, XU YQ, WANG N, et al. Next-generation preclinical functional testing models in cancer precision medicine: CTC-derived organoids[J]. Small Methods, 2024, 8( 1): e2301009. DOI: 10.1002/smtd.202301009.
|
| [40] |
JUN E, PARK Y, LEE W, et al. The identification of candidate effective combination regimens for pancreatic cancer using the histoculture drug response assay[J]. Sci Rep, 2020, 10( 1): 12004. DOI: 10.1038/s41598-020-68703-x.
|
| [41] |
SERETI E, PAPAPOSTOLOU I, DIMAS K. Pancreatic cancer organoids: An emerging platform for precision medicine?[J]. Biomedicines, 2023, 11( 3): 890. DOI: 10.3390/biomedicines11030890.
|
| [42] |
MONTEIRO MV, ROCHA M, CARVALHO MT, et al. Embedded bioprinting of tumor-scale pancreatic cancer-stroma 3D models for preclinical drug screening[J]. ACS Appl Mater Interfaces, 2024, 16( 42): 56718- 56729. DOI: 10.1021/acsami.4c11188.
|