中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 41 Issue 4
Apr.  2025
Turn off MathJax
Article Contents

Advances in the establishment and application of preclinical tumor models of pancreatic cancer

DOI: 10.12449/JCH250402
Research funding:

Research and Translational Application of Clinical Characteristic Diagnosis and Treatment Techniques in the Capital (Z221100007422070);

Beijing Science and Technology Plan (Z231100007223006);

National High Level Hospital Clinical Research Funding (2022-PUMCH-B-004);

Central Universities Fundamental Research Funds in PUMC (3332024117)

More Information
  • Corresponding author: ZHANG Taiping, tpingzhang@yahoo.com (ORCID: 0000-0003-1689-6908)
  • Received Date: 2025-01-08
  • Accepted Date: 2025-01-27
  • Published Date: 2025-04-25
  • This article reviews the research advances in the characteristics and application progress of various new models for preclinical cancer research on pancreatic cancer, analyzes and discusses the history, current research status, and advantages and disadvantages of new models of pancreatic cancer, including patient-derived tissue xenograft, conditional reprogramming, and patient derived organoids, and it also reviews the studies that have achieved clinical transformation from preclinical models and proposes possible research prospects in the future.

     

  • loading
  • [1]
    HAN B, ZHENG R, ZENG H, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2020, 4: 47- 53. DOI: 10.1016/j.jncc.2024.01.006.
    [2]
    BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74( 3): 229- 263. DOI: 10.3322/caac.21834.
    [3]
    LENCIONI G, GREGORI A, TOLEDO B, et al. Unravelling the complexities of resistance mechanism in pancreatic cancer: Insights from in vitro and ex-vivo model systems[J]. Semin Cancer Biol, 2024, 106-107: 217- 233. DOI: 10.1016/j.semcancer.2024.09.002.
    [4]
    QIAN ZR, RUBINSON DA, NOWAK JA, et al. Association of alterations in main driver genes with outcomes of patients with resected pancreatic ductal adenocarcinoma[J]. JAMA Oncol, 2018, 4( 3): e173420. DOI: 10.1001/jamaoncol.2017.3420.
    [5]
    SEKIYA S, FUKUDA J, YAMAMURA R, et al. Drosophila screening identifies dual inhibition of MEK and AURKB as an effective therapy for pancreatic ductal adenocarcinoma[J]. Cancer Res, 2023, 83( 16): 2704- 2715. DOI: 10.1158/0008-5472.CAN-22-3762.
    [6]
    RYGAARD J, POULSEN CO. Heterotransplantation of a human malignant tumour to“nude” mice[J]. Acta Pathol Microbiol Scand, 1969, 77( 4): 758- 760. DOI: 10.1111/j.1699-0463.1969.tb04520.x.
    [7]
    JANITRI V, ARULJOTHI KN, RAVI MYTHILI VM, et al. The roles of patient-derived xenograft models and artificial intelligence toward precision medicine[J]. MedComm(2020), 2024, 5( 10): e745. DOI: 10.1002/mco2.745.
    [8]
    GARCIA PL, MILLER AL, YOON KJ. Patient-derived xenograft models of pancreatic cancer: Overview and comparison with other types of models[J]. Cancers(Basel), 2020, 12( 5): 1327. DOI: 10.3390/cancers12051327.
    [9]
    BLANCHARD Z, BROWN EA, GHAZARYAN A, et al. PDX models for functional precision oncology and discovery science[J]. Nat Rev Cancer, 2024. DOI: 10.1038/s41568-024-00779-3.
    [10]
    DINIĆ J, JOVANOVIĆ STOJANOV S, DRAGOJ M, et al. Cancer patient-derived cell-based models: Applications and challenges in functional precision medicine[J]. Life(Basel), 2024, 14( 9): 1142. DOI: 10.3390/life14091142.
    [11]
    BULLE A, LIU P, SEEHRA K, et al. Combined KRAS-MAPK pathway inhibitors and HER2-directed drug conjugate is efficacious in pancreatic cancer[J]. Nat Commun, 2024, 15( 1): 2503. DOI: 10.1038/s41467-024-46811-w.
    [12]
    YANG G, GUAN WF, CAO Z, et al. Integrative genomic analysis of gemcitabine resistance in pancreatic cancer by patient-derived xenograft models[J]. Clin Cancer Res, 2021, 27( 12): 3383- 3396. DOI: 10.1158/1078-0432.CCR-19-3975.
    [13]
    LIU XF, KRAWCZYK E, SUPRYNOWICZ FA, et al. Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens[J]. Nat Protoc, 2017, 12( 2): 439- 451. DOI: 10.1038/nprot.2016.174.
    [14]
    LEE HS, LEE JS, LEE J, et al. Establishment of pancreatic cancer cell lines with endoscopic ultrasound-guided biopsy via conditionally reprogrammed cell culture[J]. Cancer Med, 2019, 8( 7): 3339- 3348. DOI: 10.1002/cam4.2210.
    [15]
    LONG Y, XIE B, SHEN HC, et al. Translation potential and challenges of in vitro and murine models in cancer clinic[J]. Cells, 2022, 11( 23): 3868. DOI: 10.3390/cells11233868.
    [16]
    ZHONG MJ, FU LW. Culture and application of conditionally reprogrammed primary tumor cells[J]. Gastroenterol Rep(Oxf), 2020, 8( 3): 224- 233. DOI: 10.1093/gastro/goaa023.
    [17]
    LEE HS, KIM E, LEE J, et al. Profiling of conditionally reprogrammed cell lines for in vitro chemotherapy response prediction of pancreatic cancer[J]. EBioMedicine, 2021, 65: 103218. DOI: 10.1016/j.ebiom.2021.103218.
    [18]
    BEGLYAROVA N, BANINA E, ZHOU Y, et al. Screening of conditionally reprogrammed patient-derived carcinoma cells identifies ERCC3-MYC interactions as a target in pancreatic cancer[J]. Clin Cancer Res, 2016, 22( 24): 6153- 6163. DOI: 10.1158/1078-0432.CCR-16-0149.
    [19]
    SATO T, VRIES RG, SNIPPERT HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459( 7244): 262- 265. DOI: 10.1038/nature07935.
    [20]
    GREGGIO C, DE FRANCESCHI F, FIGUEIREDO-LARSEN M, et al. Artificial three-dimensional niches deconstruct pancreas development in vitro[J]. Development, 2013, 140( 21): 4452- 4462. DOI: 10.1242/dev.096628.
    [21]
    BOJ SF, HWANG CI, BAKER LA, et al. Organoid models of human and mouse ductal pancreatic cancer[J]. Cell, 2015, 160( 1-2): 324- 338. DOI: 10.1016/j.cell.2014.12.021.
    [22]
    LANCASTER MA, KNOBLICH JA. Organogenesis in a dish: Modeling development and disease using organoid technologies[J]. Science, 2014, 345( 6194): 1247125. DOI: 10.1126/science.1247125.
    [23]
    PURI S, FOLIAS AE, HEBROK M. Plasticity and dedifferentiation within the pancreas: Development, homeostasis, and disease[J]. Cell Stem Cell, 2015, 16( 1): 18- 31. DOI: 10.1016/j.stem.2014.11.001.
    [24]
    SUN JJ, WANG YQ, FU H, et al. Mettl3-mediated m6A methylation controls pancreatic bipotent progenitor fate and islet formation[J]. Diabetes, 2024, 73( 2): 237- 249. DOI: 10.2337/db23-0360.
    [25]
    JIANG ZY, WU FJ, LAISE P, et al. Tff2 defines transit-amplifying pancreatic acinar progenitors that lack regenerative potential and are protective against Kras-driven carcinogenesis[J]. Cell Stem Cell, 2023, 30( 8): 1091- 1109. e 7. DOI: 10.1016/j.stem.2023.07.002.
    [26]
    FATEHULLAH A, TAN SH, BARKER N. Organoids as an in vitro model of human development and disease[J]. Nat Cell Biol, 2016, 18( 3): 246- 254. DOI: 10.1038/ncb3312.
    [27]
    XU HX, JIAO DC, LIU AG, et al. Tumor organoids: Applications in cancer modeling and potentials in precision medicine[J]. J Hematol Oncol, 2022, 15( 1): 58. DOI: 10.1186/s13045-022-01278-4.
    [28]
    LIU YX, LI NS, ZHU Y. Pancreatic organoids: A frontier method for investigating pancreatic-related diseases[J]. Int J Mol Sci, 2023, 24( 4): 4027. DOI: 10.3390/ijms24044027.
    [29]
    TAKEUCHI K, TABE S, TAKAHASHI K, et al. Incorporation of human iPSC-derived stromal cells creates a pancreatic cancer organoid with heterogeneous cancer-associated fibroblasts[J]. Cell Rep, 2023, 42( 11): 113420. DOI: 10.1016/j.celrep.2023.113420.
    [30]
    DUAN XH, ZHANG T, FENG LL, et al. A pancreatic cancer organoid platform identifies an inhibitor specific to mutant KRAS[J]. Cell Stem Cell, 2024, 31( 1): 71- 88. e 8. DOI: 10.1016/j.stem.2023.11.011.
    [31]
    ROY S, DUKIC T, KEEPERS Z, et al. SOX2 and OCT4 mediate radiation and drug resistance in pancreatic tumor organoids[J]. Cell Death Discov, 2024, 10( 1): 106. DOI: 10.1038/s41420-024-01871-1.
    [32]
    LI YG, TANG SJ, SHI XH, et al. Metabolic classification suggests the GLUT1/ALDOB/G6PD axis as a therapeutic target in chemotherapy-resistant pancreatic cancer[J]. Cell Rep Med, 2023, 4( 9): 101162. DOI: 10.1016/j.xcrm.2023.101162.
    [33]
    SHI XH, LI YG, YUAN QY, et al. Integrated profiling of human pancreatic cancer organoids reveals chromatin accessibility features associated with drug sensitivity[J]. Nat Commun, 2022, 13( 1): 2169. DOI: 10.1038/s41467-022-29857-6.
    [34]
    BOILÈVE A, CARTRY J, GOUDARZI N, et al. Organoids for functional precision medicine in advanced pancreatic cancer[J]. Gastroenterology, 2024, 167( 5): 961- 976. e 13. DOI: 10.1053/j.gastro.2024.05.032.
    [35]
    PARTE S, KAUR AB, NIMMAKAYALA RK, et al. Cancer-associated fibroblast induces acinar-to-ductal cell transdifferentiation and pancreatic cancer initiation via LAMA5/ITGA4 axis[J]. Gastroenterology, 2024, 166( 5): 842- 858. e 5. DOI: 10.1053/j.gastro.2023.12.018.
    [36]
    BIFFI G, ONI TE, SPIELMAN B, et al. IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma[J]. Cancer Discov, 2019, 9( 2): 282- 301. DOI: 10.1158/2159-8290.CD-18-0710.
    [37]
    MUCCIOLO G, ARAOS HENRÍQUEZ J, JIHAD M, et al. EGFR-activated myofibroblasts promote metastasis of pancreatic cancer[J]. Cancer Cell, 2024, 42( 1): 101- 118. e 11. DOI: 10.1016/j.ccell.2023.12.002.
    [38]
    WU YH, HUNG YP, CHIU NC, et al. Correlation between drug sensitivity profiles of circulating tumour cell-derived organoids and clinical treatment response in patients with pancreatic ductal adenocarcinoma[J]. Eur J Cancer, 2022, 166: 208- 218. DOI: 10.1016/j.ejca.2022.01.030.
    [39]
    HUANG LX, XU YQ, WANG N, et al. Next-generation preclinical functional testing models in cancer precision medicine: CTC-derived organoids[J]. Small Methods, 2024, 8( 1): e2301009. DOI: 10.1002/smtd.202301009.
    [40]
    JUN E, PARK Y, LEE W, et al. The identification of candidate effective combination regimens for pancreatic cancer using the histoculture drug response assay[J]. Sci Rep, 2020, 10( 1): 12004. DOI: 10.1038/s41598-020-68703-x.
    [41]
    SERETI E, PAPAPOSTOLOU I, DIMAS K. Pancreatic cancer organoids: An emerging platform for precision medicine?[J]. Biomedicines, 2023, 11( 3): 890. DOI: 10.3390/biomedicines11030890.
    [42]
    MONTEIRO MV, ROCHA M, CARVALHO MT, et al. Embedded bioprinting of tumor-scale pancreatic cancer-stroma 3D models for preclinical drug screening[J]. ACS Appl Mater Interfaces, 2024, 16( 42): 56718- 56729. DOI: 10.1021/acsami.4c11188.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (585) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return