中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 40 Issue 9
Sep.  2024
Turn off MathJax
Article Contents

Levels and clinical significance of urinary lead in patients with nonalcoholic fatty liver disease

DOI: 10.12449/JCH240909
Research funding:

National Natural Science Foundation of China (81673806);

China Medical Education Association Research Project (2020KTY001)

More Information
  • Corresponding author: WANG Ruilin, wrl7905@163.com (ORCID: 0000-0002-7129-016X)
  • Received Date: 2023-12-03
  • Accepted Date: 2024-01-29
  • Published Date: 2024-09-25
  •   Objective  To investigate the association between urinary lead and nonalcoholic fatty liver disease (NAFLD).  Methods  The participants, aged ≥18 years, were selected from the 2017‍ ‍—‍ ‍2020 National Health and Nutrition Examination Survey (NHANES), with the exclusion of the participants with a lack of liver transient elastography data and urinary lead markers and those with hepatitis B, hepatitis C, and significant alcohol consumption. A total of 2 492 participants were enrolled and divided into NAFLD group with 852 participants and non-NAFLD group with 1 640 participants. High-performance liquid chromatography-electrospray ionization-tandem mass spectrometry and online solid-phase extraction combined with isotope dilution were used to measure urinary lead level. The independent-samples t test or the Wilcoxon rank sum test was used for comparison of continuous data between two groups, and the chi-square test or the Fisher’s exact test was used for comparison of categorical data between two groups. Multivariate Logistic regression analysis, restricted cubic spline, subgroup analysis, and interaction analysis were used to investigate the association between urinary lead and NAFLD.  Results  The NAFLD group had a significantly higher urinary lead level than the non-NAFLD group (Z=-2.023, P=0.043). After adjustment of the covariates of age, sex, race, marital status, education, family income-to-poverty ratio, body mass index, smoking, drinking, diabetes mellitus, hypertension, and hyperlipidemia, there was a significant increase in the risk of NAFLD in the Q3 urinary lead group (odds ratio [OR]=1.360, 95% confidence interval [CI]: 1.019‍ ‍—‍ ‍1.817, P=0.037). There was a positive dose-response relationship between urinary lead and the risk of NAFLD (P=0.047), which was a non-linear relationship (Pnon-linear=0.037). There was a significant interaction between urinary lead and race, and for every quartile increase in urinary lead, the risk of NAFLD in Mexican-Americans was increased by 32.40% (OR=1.324, 95%CI: 1.017‍ ‍—‍ ‍1.632, P<0.05).  Conclusion  Urinary lead level is significantly associated with the risk of NAFLD.

     

  • loading
  • [1]
    TARGHER G, TILG H, BYRNE CD. Non-alcoholic fatty liver disease: A multisystem disease requiring a multidisciplinary and holistic approach[J]. Lancet Gastroenterol Hepatol, 2021, 6( 7): 578- 588. DOI: 10.1016/S2468-1253(21)00020-0.
    [2]
    YOUNOSSI ZM, KOENIG AB, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64( 1): 73- 84. DOI: 10.1002/hep.28431.
    [3]
    RIAZI K, AZHARI H, CHARETTE JH, et al. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2022, 7( 9): 851- 861. DOI: 10.1016/S2468-1253(22)00165-0.
    [4]
    LIU X, JU YW, MANDZHIEVA S, et al. Sporadic Pb accumulation by plants: Influence of soil biogeochemistry, microbial community and physiological mechanisms[J]. J Hazard Mater, 2023, 444( Pt A): 130391. DOI: 10.1016/j.jhazmat.2022.130391.
    [5]
    LIU WY, FENG H, ZHENG SL, et al. Pb toxicity on gut physiology and microbiota[J]. Front Physiol, 2021, 12: 574913. DOI: 10.3389/fphys.2021.574913.
    [6]
    CUOMO D, FOSTER MJ, THREADGILL D. Systemic review of genetic and epigenetic factors underlying differential toxicity to environmental lead(Pb) exposure[J]. Environ Sci Pollut Res Int, 2022, 29( 24): 35583- 35598. DOI: 10.1007/s11356-022-19333-5.
    [7]
    GUO XY, YIN XZ, LIU ZJ, et al. Non-alcoholic fatty liver disease(NAFLD) pathogenesis and natural products for prevention and treatment[J]. Int J Mol Sci, 2022, 23( 24): 15489. DOI: 10.3390/ijms232415489.
    [8]
    BOSKABADY M, MAREFATI N, FARKHONDEH T, et al. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review[J]. Environ Int, 2018, 120: 404- 420. DOI: 10.1016/j.envint.2018.08.013.
    [9]
    TESCHKE R. Aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, platinum, thallium, titanium, vanadium, and zinc: Molecular aspects in experimental liver injury[J]. Int J Mol Sci, 2022, 23( 20): 12213. DOI: 10.3390/ijms232012213.
    [10]
    SOMMAR JN, HEDMER M, LUNDH T, et al. Investigation of lead concentrations in whole blood, plasma and urine as biomarkers for biological monitoring of lead exposure[J]. J Expo Sci Environ Epidemiol, 2014, 24( 1): 51- 57. DOI: 10.1038/jes.2013.4.
    [11]
    ZHAI HL, CHEN C, WANG NJ, et al. Blood lead level is associated with non-alcoholic fatty liver disease in the Yangtze River Delta Region of China in the context of rapid urbanization[J]. Environ Health, 2017, 16( 1): 93. DOI: 10.1186/s12940-017-0304-7.
    [12]
    VUPPALANCHI R, NOUREDDIN M, ALKHOURI N, et al. Therapeutic pipeline in nonalcoholic steatohepatitis[J]. Nat Rev Gastroenterol Hepatol, 2021, 18( 6): 373- 392. DOI: 10.1038/s41575-020-00408-y.
    [13]
    MIKOLASEVIC I, ORLIC L, FRANJIC N, et al. Transient elastography(FibroScan®) with controlled attenuation parameter in the assessment of liver steatosis and fibrosis in patients with nonalcoholic fatty liver disease-Where do we stand?[J]. World J Gastroenterol, 2016, 22( 32): 7236- 7251. DOI: 10.3748/wjg.v22.i32.7236.
    [14]
    PENG HY, PAN L, RAN SM, et al. Prediction of MAFLD and NAFLD using different screening indexes: A cross-sectional study in U.S. adults[J]. Front Endocrinol, 2023, 14: 1083032. DOI: 10.3389/fendo.2023.1083032.
    [15]
    ZHANG KW, NULALI J, ZHANG CX, et al. The association between serum vitamin A and NAFLD among US adults varied in different BMI groups: A cross-sectional study[J]. Food Funct, 2023, 14( 2): 836- 844. DOI: 10.1039/d2fo02204d.
    [16]
    SELVARAJ EA, MÓZES FE, JAYASWAL ANA, et al. Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: A systematic review and meta-analysis[J]. J Hepatol, 2021, 75( 4): 770- 785. DOI: 10.1016/j.jhep.2021.04.044.
    [17]
    STANFIELD Z, SETZER RW, HULL V, et al. Bayesian inference of chemical exposures from NHANES urine biomonitoring data[J]. J Expo Sci Environ Epidemiol, 2022, 32( 6): 833- 846. DOI: 10.1038/s41370-022-00459-0.
    [18]
    RINELLA ME, NEUSCHWANDER-TETRI BA, SIDDIQUI MS, et al. AASLD practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease[J]. Hepatology, 2023, 77( 5): 1797- 1835. DOI: 10.1097/HEP.0000000000000323.
    [19]
    WANG LL, YI JY, GUO XL, et al. Associations between life’s essential 8 and non-alcoholic fatty liver disease among US adults[J]. J Transl Med, 2022, 20( 1): 616. DOI: 10.1186/s12967-022-03839-0.
    [20]
    SANDERS AP, MAZZELLA MJ, MALIN AJ, et al. Combined exposure to lead, cadmium, mercury, and arsenic and kidney health in adolescents age 12-19 in NHANES 2009-2014[J]. Environ Int, 2019, 131: 104993. DOI: 10.1016/j.envint.2019.104993.
    [21]
    CHEN L, SUN QZ, PENG SF, et al. Associations of blood and urinary heavy metals with rheumatoid arthritis risk among adults in NHANES, 1999-2018[J]. Chemosphere, 2022, 289: 133147. DOI: 10.1016/j.chemosphere.2021.133147.
    [22]
    BUSER MC, INGBER SZ, RAINES N, et al. Urinary and blood cadmium and lead and kidney function: NHANES 2007-2012[J]. Int J Hyg Environ Health, 2016, 219( 3): 261- 267. DOI: 10.1016/j.ijheh. 2016.01.005.
    [23]
    HINAI MA, JANSEN EC, SONG PX, et al. Iron deficiency and vitamin D deficiency are associated with sleep in females of reproductive age: An analysis of NHANES 2005-2018 data[J]. J Nutr, 2024, 154( 2): 648- 657. DOI: 10.1016/j.tjnut.2023.11.030.
    [24]
    KIM DW, OCK J, MOON KW, et al. Association between Pb, Cd, and Hg exposure and liver injury among Korean adults[J]. Int J Environ Res Public Health, 2021, 18( 13): 6783. DOI: 10.3390/ijerph18136783.
    [25]
    CHUNG SM, MOON JS, YOON JS, et al. The sex-specific effects of blood lead, mercury, and cadmium levels on hepatic steatosis and fibrosis: Korean nationwide cross-sectional study[J]. J Trace Elem Med Biol, 2020, 62: 126601. DOI: 10.1016/j.jtemb.2020.126601.
    [26]
    CAVE M, APPANA S, PATEL M, et al. Polychlorinated biphenyls, lead, and mercury are associated with liver disease in American adults: NHANES 2003-2004[J]. Environ Health Perspect, 2010, 118( 12): 1735- 1742. DOI: 10.1289/ehp.1002720.
    [27]
    WANG NN, SHENG ZJ, ZHOU SM, et al. Chronic lead exposure exacerbates hepatic glucolipid metabolism disorder and gut microbiota dysbiosis in high-fat-diet mice[J]. Food Chem Toxicol, 2022, 170: 113451. DOI: 10.1016/j.fct.2022.113451.
    [28]
    WAN H, WANG YY, ZHANG HJ, et al. Chronic lead exposure induces fatty liver disease associated with the variations of gut microbiota[J]. Ecotoxicol Environ Saf, 2022, 232: 113257. DOI: 10.1016/j.ecoenv.2022.113257.
    [29]
    YANG ZR, LI XM, TIAN L, et al. Heavy metals exposure is associated with early liver dysfunction among rural residents aged 40-75 years in southwest China[J]. J Appl Toxicol, 2022, 42( 6): 1044- 1056. DOI: 10.1002/jat.4276.
    [30]
    MA L, LIU JY, DONG JX, et al. Toxicity of Pb2+ on rat liver mitochondria induced by oxidative stress and mitochondrial permeability transition[J]. Toxicol Res, 2017, 6( 6): 822- 830. DOI: 10.1039/c7tx00204a.
    [31]
    URBANO T, FILIPPINI T, LASAGNI D, et al. Association of urinary and dietary selenium and of serum selenium species with serum alanine aminotransferase in a healthy Italian population[J]. Antioxidants, 2021, 10( 10): 1516. DOI: 10.3390/antiox10101516.
    [32]
    LIU J, TAN L, LIU ZY, et al. Blood and urine manganese exposure in non-alcoholic fatty liver disease and advanced liver fibrosis: An observational study[J]. Environ Sci Pollut Res Int, 2023, 30( 9): 22222- 22231. DOI: 10.1007/s11356-022-23630-4.
    [33]
    FREDIANI JK, NAIOTI EA, VOS MB, et al. Arsenic exposure and risk of nonalcoholic fatty liver disease(NAFLD) among U.S. adolescents and adults: An association modified by race/ethnicity, NHANES 2005-2014[J]. Environ Health, 2018, 17( 1): 6. DOI: 10.1186/s12940-017-0350-1.
    [34]
    HYDER O, CHUNG M, COSGROVE D, et al. Cadmium exposure and liver disease among US adults[J]. J Gastrointest Surg, 2013, 17( 7): 1265- 1273. DOI: 10.1007/s11605-013-2210-9.
    [35]
    HUH JH, LEE KJ, LIM JS, et al. High dietary sodium intake assessed by estimated 24-h urinary sodium excretion is associated with NAFLD and hepatic fibrosis[J]. PLoS One, 2015, 10( 11): e0143222. DOI: 10.1371/journal.pone.0143222.
    [36]
    LUO J, XING WQ, IPPOLITO JA, et al. Bioaccessibility, source and human health risk of Pb, Cd, Cu and Zn in windowsill dusts from an area affected by long-term Pb smelting[J]. Sci Total Environ, 2022, 842: 156707. DOI: 10.1016/j.scitotenv.2022.156707.
    [37]
    MORADNIA M, MOVAHEDIAN ATTAR H, HEIDARI Z, et al. Monitoring of urinary arsenic(As) and lead(Pb) among a sample of pregnant Iranian women[J]. J Environ Health Sci Eng, 2021, 19( 2): 1901- 1909. DOI: 10.1007/s40201-021-00743-5.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(3)

    Article Metrics

    Article views (132) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return