中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

Role of apical sodium-dependent bile acid transporter in hepatobiliary diseases

DOI: 10.12449/JCH240133
Research funding:

National Natural Science Foundation of China (82205184);

Bejing Municipal Administration of Hospital Incubating Program (PZ2022027)

More Information
  • Corresponding author: YANG yan, yy2303@sina.com (ORCID: 0000-0003-1070-9614)
  • Received Date: 2023-03-29
  • Accepted Date: 2023-05-06
  • Published Date: 2024-01-23
  • Apical sodium-dependent bile acid transporter (ASBT) is a key transporter responsible for intestinal reabsorption of bile acid and plays an important role in maintaining bile acid and cholesterol homeostasis, and its expression is regulated by various factors including transcription factors, nuclear receptors, and intestinal microflora. The abnormal expression and function of ASBT can lead to disorders in the metabolism of bile acid and cholesterol, causing a variety of hepatobiliary diseases. At present, ASBT has attracted wide attention as a therapeutic target. This article elaborates on the biological characteristics and expression regulation mechanism of ASBT and reviews the role of ASBT in hepatobiliary diseases, in order to provide a new direction for the treatment of related diseases.

     

  • [1]
    XIAO L, PAN GY. An important intestinal transporter that regulates the enterohepatic circulation of bile acids and cholesterol homeostasis: The apical sodium-dependent bile acid transporter(SLC10A2/ASBT)[J]. Clin Res Hepatol Gastroenterol, 2017, 41( 5): 509- 515. DOI: 10.1016/j.clinre.2017.02.001.
    [2]
    LUO ZL, CHENG L, WANG T, et al. Bile acid transporters are expressed and heterogeneously distributed in rat bile ducts[J]. Gut Liver, 2019, 13( 5): 569- 575. DOI: 10.5009/gnl18265.
    [3]
    LI M, WANG Q, LI Y, et al. Apical sodium-dependent bile acid transporter, drug target for bile acid related diseases and delivery target for prodrugs: Current and future challenges[J]. Pharmacol Ther, 2020, 212: 107539. DOI: 10.1016/j.pharmthera.2020.107539.
    [4]
    LI J, ZHENG KY, ZHANG BB. Mechanism of action of bile acid metabolism in regulating cholestatic liver disease and the research and development of drugs[J]. J Clin Hepatol, 2021, 37( 10): 2482- 2487. DOI: 10.3969/j.issn.1001-5256.2021.10.048.

    李静, 郑葵阳, 张蓓蓓. 胆汁酸代谢调节胆汁淤积性肝病的作用机制及药物研发[J]. 临床肝胆病杂志, 2021, 37( 10): 2482- 2487. DOI: 10.3969/j.issn.1001-5256.2021.10.048.
    [5]
    WANG XD, LYU Y, JI YJ, et al. An engineered disulfide bridge traps and validates an outward-facing conformation in a bile acid transporter[J]. Acta Crystallogr D Struct Biol, 2021, 77( Pt 1): 108- 116. DOI: 10.1107/S205979832001517X.
    [6]
    KAZGAN N, METUKURI MR, PURUSHOTHAM A, et al. Intestine-specific deletion of SIRT1 in mice impairs DCoH2-HNF-1α-FXR signaling and alters systemic bile acid homeostasis[J]. Gastroenterology, 2014, 146( 4): 1006- 1016. DOI: 10.1053/j.gastro.2013.12.029.
    [7]
    LIU S, LIU M, ZHANG ML, et al. Transcription factor Klf9 controls bile acid reabsorption and enterohepatic circulation in mice via promoting intestinal Asbt expression[J]. Acta Pharmacol Sin, 2022, 43( 9): 2362- 2372. DOI: 10.1038/s41401-021-00850-x.
    [8]
    MA L, JÜTTNER M, KULLAK-UBLICK GA, et al. Regulation of the gene encoding the intestinal bile acid transporter ASBT by the caudal-type homeobox proteins CDX1 and CDX2[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302( 1): G123- G133. DOI: 10.1152/ajpgi.00102.2011.
    [9]
    YANG N, DONG YQ, JIA GX, et al. ASBT(SLC10A2): A promising target for treatment of diseases and drug discovery[J]. Biomed Pharmacother, 2020, 132: 110835. DOI: 10.1016/j.biopha.2020.110835.
    [10]
    NGUYEN JT, RIESSEN R, ZHANG TY, et al. Deletion of intestinal SHP impairs short-term response to cholic acid challenge in male mice[J]. Endocrinology, 2021, 162( 8): bqab063. DOI: 10.1210/endocr/bqab063.
    [11]
    SONNE DP. Mechanisms in endocrinology: FXR signalling: A novel target in metabolic diseases[J]. Eur J Endocrinol, 2021, 184( 5): R193- R205. DOI: 10.1530/EJE-20-1410.
    [12]
    OUT C, PATANKAR JV, DOKTOROVA M, et al. Gut microbiota inhibit Asbt-dependent intestinal bile acid reabsorption via Gata4[J]. J Hepatol, 2015, 63( 3): 697- 704. DOI: 10.1016/j.jhep.2015.04.030.
    [13]
    CHAUDHARI SN, LUO JN, HARRIS DA, et al. A microbial metabolite remodels the gut-liver axis following bariatric surgery[J]. Cell Host Microbe, 2021, 29( 3): 408- 424. e 7. DOI: 10.1016/j.chom.2020.12.004.
    [14]
    HASSAN S, HERTEL P. Overview of progressive familial intrahepatic cholestasis[J]. Clin Liver Dis, 2022, 26( 3): 371- 390. DOI: 10.1016/j.cld.2022.03.003.
    [15]
    van der MARK VA, de WAART DR, HO-MOK KS, et al. The lipid flippase heterodimer ATP8B1-CDC50A is essential for surface expression of the apical sodium-dependent bile acid transporter(SLC10A2/ASBT) in intestinal Caco-2 cells[J]. Biochim Biophys Acta, 2014, 1842( 12 Pt A): 2378- 2386. DOI: 10.1016/j.bbadis.2014.09.003.
    [16]
    THOMPSON RJ, ARNELL H, ARTAN R, et al. Odevixibat treatment in progressive familial intrahepatic cholestasis: A randomised, placebo-controlled, phase 3 trial[J]. Lancet Gastroenterol Hepatol, 2022, 7( 9): 830- 842. DOI: 10.1016/S2468-1253(22)00093-0.
    [17]
    SHIRLEY M. Maralixibat: First approval[J]. Drugs, 2022, 82( 1): 71- 76. DOI: 10.1007/s40265-021-01649-0.
    [18]
    KAMATH BM, GOLDSTEIN A, HOWARD R, et al. Maralixibat treatment response in alagille syndrome is associated with improved health-related quality of life[J]. J Pediatr, 2023, 252: 68- 75.e5. DOI: 10.1016/j.jpeds.2022.09.001.
    [19]
    KUNST RF, de WAART DR, WOLTERS F, et al. Systemic ASBT inactivation protects against liver damage in obstructive cholestasis in mice[J]. JHEP Rep, 2022, 4( 11): 100573. DOI: 10.1016/j.jhepr.2022.100573.
    [20]
    CABALLERO-CAMINO FJ, RODRIGUES PM, WÅNGSELL F, et al. A3907, a systemic ASBT inhibitor, improves cholestasis in mice by multiorgan activity and shows translational relevance to humans[J]. Hepatology, 2023. DOI: 10.1097/HEP.0000000000000376.[ Online ahead of print]
    [21]
    ZHOU L, WANG XT, SONG FL, et al. Effect of Huayu Lidan decoction combined with a comprehensive intervention in the treatment of patients with intrahepatic cholestasis of pregnancy[J]. J Changchun Univ Chin Med, 2022, 38( 11): 1234- 1237. DOI: 10.13463/j.cnki.cczyy.2022.11.014.

    周璐, 王希涛, 宋风丽, 等. 化瘀利胆汤结合综合干预治疗妊娠期肝内胆汁淤积症[J]. 长春中医药大学学报, 2022, 38( 11): 1234- 1237. DOI: 10.13463/j.cnki.cczyy.2022.11.014.
    [22]
    WANG LR, LIU J. Role of miR-221/222 and its target genes in the pathogenesis of intrahepatic cholestasis of pregnancy[J]. J Chongqing Med Univ, 2019, 44( 5): 662- 667. DOI: 10.13406/j.cnki.cyxb.001937.

    王林若, 刘建. miR-221/222及其靶基因在妊娠期肝内胆汁淤积症发病机制中作用的研究[J]. 重庆医科大学学报, 2019, 44( 5): 662- 667. DOI: 10.13406/j.cnki.cyxb.001937.
    [23]
    ONTSOUKA E, EPSTEIN A, KALLOL S, et al. Placental expression of bile acid transporters in intrahepatic cholestasis of pregnancy[J]. Int J Mol Sci, 2021, 22( 19): 10434. DOI: 10.3390/ijms221910434.
    [24]
    OVADIA C, PERDONES-MONTERO A, SPAGOU K, et al. Enhanced microbial bile acid deconjugation and impaired ileal uptake in pregnancy repress intestinal regulation of bile acid synthesis[J]. Hepatology, 2019, 70( 1): 276- 293. DOI: 10.1002/hep.30661.
    [25]
    MEADOWS V, MARAKOVITS C, EKSER B, et al. Loss of apical sodium bile acid transporter alters bile acid circulation and reduces biliary damage in cholangitis[J]. Am J Physiol Gastrointest Liver Physiol, 2023, 324( 1): G60- G77. DOI: 10.1152/ajpgi.00112.2022.
    [26]
    MIETHKE AG, ZHANG WJ, SIMMONS J, et al. Pharmacological inhibition of apical sodium-dependent bile acid transporter changes bile composition and blocks progression of sclerosing cholangitis in multidrug resistance 2 knockout mice[J]. Hepatology, 2016, 63( 2): 512- 523. DOI: 10.1002/hep.27973.
    [27]
    GAO LX, WANG L, WOO E, et al. Clinical management of primary biliary cholangitis-strategies and evolving trends[J]. Clin Rev Allergy Immunol, 2020, 59( 2): 175- 194. DOI: 10.1007/s12016-019-08772-7.
    [28]
    AL-DURY S, WAHLSTRÖM A, WAHLIN S, et al. Pilot study with IBAT inhibitor A4250 for the treatment of cholestatic pruritus in primary biliary cholangitis[J]. Sci Rep, 2018, 8( 1): 6658. DOI: 10.1038/s41598-018-25214-0.
    [29]
    CHENG SH, ZOU M, LIU QH, et al. Activation of constitutive androstane receptor prevents cholesterol gallstone formation[J]. Am J Pathol, 2017, 187( 4): 808- 818. DOI: 10.1016/j.ajpath.2016.12.013.
    [30]
    FERKINGSTAD E, ODDSSON A, GRETARSDOTTIR S, et al. Genome-wide association meta-analysis yields 20 loci associated with gallstone disease[J]. Nat Commun, 2018, 9( 1): 5101. DOI: 10.1038/s41467-018-07460-y.
    [31]
    WANG CE, XU WT, GONG J, et al. Research progress in the treatment of nonalcoholic fatty liver disease[J]. Chin J Med Offic, 2022, 50( 9): 897- 899, 903. DOI: 10.16680/j.1671-3826.2022.09.06.

    王彩娥, 许文涛, 宫建, 等. 非酒精性脂肪性肝病治疗研究进展[J]. 临床军医杂志, 2022, 50( 9): 897- 899, 903. DOI: 10.16680/j.1671-3826.2022.09.06.
    [32]
    GILLARD J, CLERBAUX LA, NACHIT M, et al. Bile acids contribute to the development of non-alcoholic steatohepatitis in mice[J]. JHEP Rep, 2021, 4( 1): 100387. DOI: 10.1016/j.jhepr.2021.100387.
    [33]
    van de PEPPEL IP, BERTOLINI A, van DIJK TH, et al. Efficient reabsorption of transintestinally excreted cholesterol is a strong determinant for cholesterol disposal in mice[J]. J Lipid Res, 2019, 60( 9): 1562- 1572. DOI: 10.1194/jlr.M094607.
    [34]
    SALIC K, KLEEMANN R, WILKINS-PORT C, et al. Apical sodium-dependent bile acid transporter inhibition with volixibat improves metabolic aspects and components of non-alcoholic steatohepatitis in Ldlr-/-. Leiden mice[J]. PLoS One, 2019, 14( 6): e0218459. DOI: 10.1371/journal.pone.0218459.
    [35]
    van de PEPPEL IP, RAO A, DOMMERHOLT MB, et al. The beneficial effects of apical sodium-dependent bile acid transporter inactivation depend on dietary fat composition[J]. Mol Nutr Food Res, 2020, 64( 24): e2000750. DOI: 10.1002/mnfr.202000750.
    [36]
    RAO A, van de PEPPEL IP, GUMBER S, et al. Attenuation of the hepatoprotective effects of ileal apical sodium dependent bile acid transporter(ASBT) inhibition in choline-deficient L-amino acid-defined(CDAA) diet-fed mice[J]. Front Med, 2020, 7: 60. DOI: 10.3389/fmed.2020.00060.
    [37]
    MATYE DJ, WANG HW, LUO WY, et al. Combined ASBT inhibitor and FGF15 treatment improves therapeutic efficacy in experimental nonalcoholic steatohepatitis[J]. Cell Mol Gastroenterol Hepatol, 2021, 12( 3): 1001- 1019. DOI: 10.1016/j.jcmgh.2021.04.013.
    [38]
    LIU YL, LIU T, ZHAO X, et al. New insights into the bile acid-based regulatory mechanisms and therapeutic perspectives in alcohol-related liver disease[J]. Cell Mol Life Sci, 2022, 79( 9): 486. DOI: 10.1007/s00018-022-04509-6.
    [39]
    MATYE DJ, LI Y, CHEN C, et al. Gut-restricted apical sodium-dependent bile acid transporter inhibitor attenuates alcohol-induced liver steatosis and injury in mice[J]. Alcohol Clin Exp Res, 2021, 45( 6): 1188- 1199. DOI: 10.1111/acer.14619.
  • Relative Articles

    [1]Ziyun GUO, Lina DU, Xiaoxuan XIE, Yan YANG. Level of vitamin D in children with cholestatic liver disease and its clinical features[J]. Journal of Clinical Hepatology, 2025, 41(1): 99-103. doi: 10.12449/JCH250115
    [2]Jiping ZHANG. Pathological diagnosis of cholestatic liver disease[J]. Journal of Clinical Hepatology, 2024, 40(6): 1093-1099. doi: 10.12449/JCH240605
    [3]Jiayi ZHANG, Yun YU, Fan ZHAO, Lu YE, Jianqing WANG. Mechanism of bis(2-ethylhexyl) phthalate in inducing cholestasis and liver injury in mice[J]. Journal of Clinical Hepatology, 2024, 40(5): 1003-1008. doi: 10.12449/JCH240521
    [4]Qingqing ZHANG, Ying QU, Xiaobo CAI, Lungen LU. Research advances in animal models of cholestatic liver disease[J]. Journal of Clinical Hepatology, 2023, 39(7): 1754-1760. doi: 10.3969/j.issn.1001-5256.2023.07.035
    [5]Yuanqin DU, Meng WANG, Guochu HUANG, Chun YAO, Ruixi ZHONG, Liangjiang HUANG, Jian XU, Jingjing HUANG, Qinwen TAN, Dewen MAO. Therapeutic effect of retention enema with compound rhubarb decoction on a rat model of minimal hepatic encephalopathy based on bile acid metabolomics[J]. Journal of Clinical Hepatology, 2023, 39(10): 2348-2357. doi: 10.3969/j.issn.1001-5256.2023.10.012
    [6]Jing LI, Kuiyang ZHENG, Beibei ZHANG. Mechanism of action of bile acid metabolism in regulating cholestatic liver disease and the research and development of drugs[J]. Journal of Clinical Hepatology, 2021, 37(10): 2482-2487. doi: 10.3969/j.issn.1001-5256.2021.10.048
    [7]Chen RuiLing, Ma Xiong. Pathogenesis of cholestasis-induced liver fibrosis and thoughts for blockade[J]. Journal of Clinical Hepatology, 2019, 35(2): 247-251. doi: 10.3969/j.issn.1001-5256.2019.02.002
    [8]Guo MengMeng, Xie Wen. New therapeutic targets and drugs for cholestatic liver disease[J]. Journal of Clinical Hepatology, 2019, 35(2): 262-265. doi: 10.3969/j.issn.1001-5256.2019.02.005
    [9]Kan YanTing, Yang YongFeng. Role of cholestatic liver disease-related genes in intrahepatic cholestasis of pregnancy[J]. Journal of Clinical Hepatology, 2019, 35(7): 1439-1443. doi: 10.3969/j.issn.1001-5256.2019.07.006
    [10]Du LiNa, Yang Yan. Establishment and application of animal models of cholestasis[J]. Journal of Clinical Hepatology, 2019, 35(2): 444-447. doi: 10.3969/j.issn.1001-5256.2019.02.046
    [11]Jia HaoYu, Yang ZhangQing. The role of enterohepatic circulation of bile acids and intestinal microbiota in the pathogenesis and treatment of cholestatic liver disease[J]. Journal of Clinical Hepatology, 2019, 35(2): 270-274. doi: 10.3969/j.issn.1001-5256.2019.02.007
    [12]Shen Hong, Hu Meng, Wei ZeHui, Zhang Dong, Zhang JunChang, Tian GuangJun. Bile formation, secretion, and excretion and the pathogenesis of cholestasis[J]. Journal of Clinical Hepatology, 2019, 35(2): 431-437. doi: 10.3969/j.issn.1001-5256.2019.02.043
    [13]Jiang Chao, Huang HeYu, Lu: GuoYue. Perspectives of liver transplantation for infantile cholestatic liver disease[J]. Journal of Clinical Hepatology, 2017, 33(10): 1928-1930. doi: 10.3969/j.issn.1001-5256.2017.10.015
    [14]Li XiaoFeng, Gong JingYu, Wang JianShe. Association between enterohepatic circulation of bile acid and cholestatic liver disease[J]. Journal of Clinical Hepatology, 2017, 33(10): 1922-1927. doi: 10.3969/j.issn.1001-5256.2017.10.014
    [15]Sun FengXia, Sui JingLi, Li Pan, Wang Man, Wu Fang, Li XiaoLing. Biochemical parameters in diagnosis of cholestatic liver disease[J]. Journal of Clinical Hepatology, 2016, 32(8): 1488-1490. doi: 10.3969/j.issn.1001-5256.2016.08.011
    [16]Zhang QiDi, Lu LunGen. Mechanisms and treatment of cholestasis- induced liver fibrosis[J]. Journal of Clinical Hepatology, 2015, 31(3): 337-341. doi: 10.3969/j.issn.1001-5256.2015.03.005
    [17]Qu Ying, Xu MingYi, Lu LunGen. Current progress in understanding of cholestasis and autoimmune liver diseases——Meeting review about 1st symposium on cholestasis and autoimmune liver disease[J]. Journal of Clinical Hepatology, 2011, 27(2): 222-225.
    [18]Yang Lu, Sun Mei. Clinical analysis of 145 cases with infantile cholestasis[J]. Journal of Clinical Hepatology, 2011, 27(7): 731-734.
    [19]Zhu QiRong, Wang JianShe. Differential diagnosis of infantile cholestasis[J]. Journal of Clinical Hepatology, 2011, 27(7): 679-681+693.
    [20]Lu LunGen. Mechanism of bile secretion, excretion, regulation and cholestasis[J]. Journal of Clinical Hepatology, 2011, 27(6): 570-571+580.
  • Cited by

    Periodical cited type(2)

    1. 王杰,周涛,喻凯凯,程良斌,蔡岳. 程良斌治疗胆汁淤积性肝病相关瘙痒症的临床经验. 中国医药导报. 2024(24): 155-158 .
    2. 周恩慧,吴申燕,胡宇欣,肖斐,王媛,洪峰. 黔南地区不同性别的布依族尿液金属浓度与胆结石患病风险的关联研究. 现代预防医学. 2024(20): 3649-3656+3671 .

    Other cited types(0)

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.2 %FULLTEXT: 17.2 %META: 77.9 %META: 77.9 %PDF: 4.9 %PDF: 4.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.1 %其他: 6.1 %其他: 0.4 %其他: 0.4 %Okinawa: 0.1 %Okinawa: 0.1 %San Lorenzo: 0.2 %San Lorenzo: 0.2 %上海: 5.4 %上海: 5.4 %东莞: 0.2 %东莞: 0.2 %中山: 0.3 %中山: 0.3 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %伦敦: 0.4 %伦敦: 0.4 %内江: 0.3 %内江: 0.3 %包头: 0.2 %包头: 0.2 %北京: 5.0 %北京: 5.0 %华盛顿州: 0.1 %华盛顿州: 0.1 %南京: 1.2 %南京: 1.2 %卡纳塔克: 0.2 %卡纳塔克: 0.2 %合肥: 0.6 %合肥: 0.6 %吉林: 0.1 %吉林: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %大连: 0.3 %大连: 0.3 %天津: 0.2 %天津: 0.2 %太原: 0.3 %太原: 0.3 %孝感: 0.3 %孝感: 0.3 %安康: 0.2 %安康: 0.2 %宣城: 0.1 %宣城: 0.1 %密蘇里城: 0.1 %密蘇里城: 0.1 %尚佩恩: 0.1 %尚佩恩: 0.1 %山景城: 0.1 %山景城: 0.1 %常德: 0.2 %常德: 0.2 %广安: 0.2 %广安: 0.2 %广州: 0.7 %广州: 0.7 %开封: 0.3 %开封: 0.3 %张家口: 2.7 %张家口: 2.7 %德里: 0.1 %德里: 0.1 %成都: 1.0 %成都: 1.0 %扬州: 0.1 %扬州: 0.1 %新加坡: 0.1 %新加坡: 0.1 %旺角: 0.1 %旺角: 0.1 %昆明: 0.5 %昆明: 0.5 %景德镇: 0.1 %景德镇: 0.1 %曲靖: 0.1 %曲靖: 0.1 %朝阳: 0.2 %朝阳: 0.2 %本溪: 0.2 %本溪: 0.2 %杭州: 1.0 %杭州: 1.0 %格兰特县: 0.5 %格兰特县: 0.5 %桂林: 0.1 %桂林: 0.1 %武汉: 0.8 %武汉: 0.8 %沈阳: 0.7 %沈阳: 0.7 %海得拉巴: 0.2 %海得拉巴: 0.2 %淄博: 0.2 %淄博: 0.2 %深圳: 0.1 %深圳: 0.1 %温州: 0.1 %温州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.3 %漯河: 0.3 %烟台: 0.1 %烟台: 0.1 %班加罗尔: 0.1 %班加罗尔: 0.1 %石家庄: 0.5 %石家庄: 0.5 %罗奥尔凯埃: 0.1 %罗奥尔凯埃: 0.1 %芒廷维尤: 39.4 %芒廷维尤: 39.4 %芝加哥: 3.1 %芝加哥: 3.1 %苏州: 0.3 %苏州: 0.3 %莫斯科: 0.9 %莫斯科: 0.9 %西宁: 12.5 %西宁: 12.5 %西安: 0.9 %西安: 0.9 %西雅图: 0.1 %西雅图: 0.1 %许昌: 0.1 %许昌: 0.1 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.1 %赣州: 0.1 %运城: 0.9 %运城: 0.9 %郑州: 0.7 %郑州: 0.7 %重庆: 0.2 %重庆: 0.2 %金昌: 0.1 %金昌: 0.1 %铜仁: 0.1 %铜仁: 0.1 %长春: 2.0 %长春: 2.0 %长沙: 2.6 %长沙: 2.6 %长治: 0.1 %长治: 0.1 %雅安: 0.1 %雅安: 0.1 %青岛: 0.7 %青岛: 0.7 %香港: 0.1 %香港: 0.1 %其他其他OkinawaSan Lorenzo上海东莞中山乌鲁木齐伊利诺伊州伦敦内江包头北京华盛顿州南京卡纳塔克合肥吉林咸阳哈尔滨哥伦布大连天津太原孝感安康宣城密蘇里城尚佩恩山景城常德广安广州开封张家口德里成都扬州新加坡旺角昆明景德镇曲靖朝阳本溪杭州格兰特县桂林武汉沈阳海得拉巴淄博深圳温州湘潭漯河烟台班加罗尔石家庄罗奥尔凯埃芒廷维尤芝加哥苏州莫斯科西宁西安西雅图许昌贵阳赣州运城郑州重庆金昌铜仁长春长沙长治雅安青岛香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (773) PDF downloads(49) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return