中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单因素分析与多因素分析的结果矛盾怎么办?

阅读次数:3620
  • 分享到:

用微信扫码二维码

分享至好友和朋友圈

发布日期:2020-05-18
来源:临床流行病学和循证医学
作者:张华,赵一鸣

现在的临床研究中,除了RCT研究,一般要进行多因素分析,比如病因研究、预后研究中,一般先做单因素分析(t检验、方差分析、卡方检验等),再做logistic回归、COX回归、线性回归等。那么问题来了,单因素分析与多因素分析的结果不相同怎么办?

我们用下表表示单因素分析与多因素分析结果对比的可能结果:

对于情形A,当单因素分析结果和多因素分析结果差异都有统计学意义时,在文章中比较好解释,我们认为这个自变量是因变量的独立影响因素;对于情形D,单因素分析结果和多因素分析结果差异都没有统计学意义时,我们认为这自变量不是因变量的影响因素。

对于情形B,在单因素分析中差异有统计学意义,但多因素中没有。这种情况也较常见。我们认为在单因素分析中,自变量与因变量是假关联或者间接影响因素,因此在多因素分析中调整了某些因素的影响后,这个自变量与因变量的“假关联”消失了。我们一般下结论:这个自变量不是因变量的独立影响因素(影响因素可以换成危险因素、保护因素、预后因素等)。

对于情形C,在单因素分析中差异无统计学意义,但多因素中差异却有统计学意义。这种情况并不常见,原因是当我们进行单因素分析差异没有统计学意义时,一般不会再将此自变量引入多因素分析。事实上,混杂因素使自变量与因变量的关联扭曲了,这里的扭曲可以是关联增强,也可以是关联减弱甚至掩盖了真实的关联。因此这种情形C就会出现了,也可以下结论这个自变量是因变量的独立影响因素。

当然我们下结论也不能太任性了。上面成立的基础是多因素分析的正确应用。实际是多因素分析是一个黑匣子,很多原因可能导致多因素分析是错误的,这就要求我们掌握多因素分析的条件,仔细检验回归模型是否正确,并与临床实际相结合,才能得到正确的结果和合理的结论。拿不准的情况下可以咨询统计学专家。

  • 分享到:

用微信扫码二维码

分享至好友和朋友圈

阅读次数:3620
  • 1 病毒性肝炎
    • 1.1 乙型肝炎
    • 1.2 丙型肝炎
    • 1.3 甲型肝炎
    • 1.4 戊型肝炎
    • 1.5 其他肝炎
  • 2 肝硬化及并发症
  • 3 酒精性肝病
  • 4 非酒精性脂肪性肝病
  • 5 肝衰竭/肝性脑病/人工肝
  • 6 肝肿瘤
  • 7 自身免疫性肝病
  • 8 药物性肝病
  • 9 肝移植
  • 10 其他肝病
    • 10.1 遗传及代谢性肝病
    • 10.2 胆汁淤积性肝病
    • 10.3 肝脏血管病
  • 11 一般肝病/肝脏检查
  • 12 胆道疾病
  • 13 胰腺疾病
  • 14 全身疾病与肝病/内镜
  • 15 肝胆胰疾病相关评分系统汇总