基于Nrf2信号通路探讨茵陈蒿汤对阻塞性黄疸大鼠肾氧化应激损伤的影响及其作用机制
DOI: 10.3969/j.issn.1001-5256.2023.05.019
Effect of Yinchenhao decoction on renal oxidative stress injury in rats with obstructive jaundice and its mechanism of action based on the nuclear factor erythroid 2-related factor 2 signaling pathway
-
摘要:
目的 探讨茵陈蒿汤对阻塞性黄疸大鼠肾氧化应激损伤的作用与调节核因子E2相关因子2(Nrf2)表达及核异位的关系。 方法 32只雄性SD大鼠,随机分为假手术组(S组)、模型组(O组)、低剂量茵陈蒿汤组(LY组)和高剂量茵陈蒿汤组(HY组),每组8只,S组大鼠仅游离上段胆总管但不予结扎,剩余各组大鼠胆总管中上1/3行双重结扎建立阻塞性黄疸模型,7天后LY组、HY组分别予茵陈蒿汤6.3 mL/kg和18.9 mL/kg灌胃,S组、O组每日给予等体积蒸馏水灌胃,连续7天,于第14天处理大鼠。采用ELISA法测定大鼠血清总胆红素(TBil)、直接胆红素(DBil)、丙氨酸转氨酶(ALT)、谷氨酰转移酶(GGT)、尿素氮(BUN)和血肌酐(Cr)水平;分光光度法检测大鼠肾组织氧化应激因子超氧化物歧化酶(SOD)和丙二醛(MDA)活性;实时荧光定量PCR和蛋白免疫印迹法分别检测肾组织中Nrf2、Kelch样环氧氯丙烷相关蛋白1(Keap1)、醌氧化还原酶1(NQO1)mRNA和蛋白表达水平;免疫组化检测肾组织中Nrf2蛋白的核异位情况。计量资料多组间比较采用单因素方差分析,组内进一步两两比较采用LSD-t检验。 结果 与S组比较,O组大鼠TBil、DBil、ALT、GGT、BUN、Cr水平升高,SOD活性减弱,MDA水平升高,差异均有统计学意义(P值均<0.05);与O组比较,LY组和HY组肝、肾功能指标水平均下降,SOD活性升高,MDA水平降低,差异均有统计学意义(P值均<0.05)。与S组比较,O组大鼠肾组织中Nrf2、NQO1 mRNA和蛋白表达水平均明显下降(P值均<0.05);与O组比较,LY组和HY组Nrf2、NQO1 mRNA和蛋白表达水平均明显升高(P值均<0.05);各组大鼠肾组织中Keap1蛋白表达水平无明显差异(P>0.05)。与S组比较,O组大鼠肾组织中Nrf2细胞核内阳性率显著降低(P<0.05);与O组比较,LY组和HY组Nrf2细胞核内阳性率均显著升高(P值均<0.05)。 结论 茵陈蒿汤可以有效减轻阻塞性黄疸引起的肾损伤,其作用机制可能是通过上调大鼠肾组织中Nrf2蛋白的表达,并调控Nrf2蛋白核异位,从而介导下游NQO1蛋白的表达,调节阻塞性黄疸引起的氧化应激反应,进而减轻大鼠肾损伤。 -
关键词:
- 黄疸, 阻塞性 /
- 肾损伤 /
- 茵陈蒿汤 /
- 氧化性应激 /
- 大鼠, Sprague-Dawley
Abstract:Objective To investigate the effect of Yinchenhao decoction on renal oxidative stress injury in rats with obstructive jaundice and its association with the regulation of the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear translocation. Methods A total of 32 male Sprague-Dawley rats were randomly divided into sham-operation group (S group), model group (O group), low-dose Yinchenhao decoction group (LY group), and high-dose Yinchenhao decoction group (HY group), with 8 rats in each group. For the rats in the S group, the upper common bile duct was isolated without ligation, and for those in the other groups, double ligation of the middle and upper 1/3 of the common bile duct was performed to establish a model of obstructive jaundice. After 7 days, the rats in the LY group and the HY group were given Yinchenhao decoction by gavage at a dose of 6.3 and 18.9 mL/kg, respectively, while those in the S and O groups were given an equal volume of distilled water by gavage every day for 7 consecutive days, and the rats were treated on day 14. ELISA was used to measure the serum levels of total bilirubin (TBil), direct bilirubin (DBil), alanine aminotransferase (ALT), gamma-glutamyl transpeptidase (GGT), blood urea nitrogen (BUN), and creatinine (Cr); spectrophotometry was used to measure the activity of the oxidative stress factors superoxide dismutase (SOD) and malondialdehyde (MDA) in renal tissue; quantitative real- time PCR and Western blotting were used to measure the mRNA and protein expression levels of Nrf2, Kelch-like ECH-associated protein 1 (Keap1), and NAD(P)H quinone dehydrogenase 1 (NQO1) in renal tissue; immunohistochemistry was used to measure observe the nuclear translocation of Nrf2 protein in renal tissue. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the least significant difference t-test was used for further pairwise comparison within groups. Results Compared with the S group, the O group had significant increases in the levels of TBil, DBil, ALT、GGT, BUN, and Cr, a significant reduction in the activity of SOD, and a significant increase in the level of MDA (all P < 0.05). Compared with the O group, the LY group and the HY group had significant reductions in liver and renal function parameters, a significant increase in the activity of SOD, and a significant reduction in the level of MDA (all P < 0.05). Compared with the S group, the O group had significant reductions in the mRNA and protein expression levels of Nrf2 and NQO1 in renal tissue (all P < 0.05), and compared with the O group, the LY group and the HY group had significant increases in the mRNA and protein expression levels of Nrf2 and NQO1 (all P < 0.05), while there was no significant difference in the protein expression level of Keap1 between groups (P > 0.05). Compared with the S group, the O group had a significant reduction in the positive rate of Nrf2 in cell nucleus in renal tissue (P < 0.05), and compared with the O group, the LY group and the HY group had a significant increase in the positive rate of Nrf2 in cell nucleus (P < 0.05). Conclusion Yinchenhao decoction can effectively alleviate renal injury caused by obstructive jaundice, possibly by upregulating the protein expression of Nrf2 in renal tissue and regulating the nuclear translocation of Nrf2 protein, so as to mediate the protein expression of downstream NQO1, regulate oxidative stress response caused by obstructive jaundice, and thereby alleviate renal injury in rats. -
Key words:
- Jaundice, Obstructive /
- Renal Injury /
- Yinchenhao Decoction /
- Oxidative Stress /
- Rats, Sprague-Dawley
-
表 1 引物序列
Table 1. Primer sequence
基因 引物序列 扩增片段长度(bp) Nrf2 上游5′-CTTTAGTCAGCGACAGAAGGAC-3′ 227 下游5′-AGGCATCTTGTTTGGGAATGTG-3′ Keap1 上游5′- CGGGGACGCAGTGATGTATG-3′ 85 下游5′-TGTGTAGCTGAAGGTTCGGTTA-3′ NQO1 上游5′- AGGATGGGAGGTACTCGAATC-3′ 127 下游5′-TGCTAGAGATGACTCGGAAGG-3′ β-actin 上游5′- GTGACGTTGACATCCGTAAAGA-3′ 245 下游5′-GCCGGACTCATCGTACTCC-3′ 表 2 大鼠血清中TBil、DBil、ALT、GGT、BUN、Cr水平比较
Table 2. Comparison of serum TBil, DBil, ALT, GGT, BUN and Cr levels in rats
组别 动物数(只) TBil (μmol/L) DBil (μmol/L) ALT (U/L) GGT (U/L) BUN (mmol/L) Cr (μmol/L) S组 8 1.83±0.331) 0.87±0.441) 63.17±10.291) 1.34±0.651) 3.90±0.601) 28.05±1.751) O组 8 209.80±17.47 146.99±13.74 415.23±55.93 47.57±10.97 7.28±1.01 33.41±1.77 LY组 8 151.51±13.471) 114.11±14.481) 291.67±30.681) 30.53±6.691) 5.27±1.161) 30.45±1.951) HY组 8 122.30±7.261)2) 85.70±13.261)2) 189.41±47.321)2) 20.83±4.611)2) 4.01±0.261)2) 28.38±1.761)2) F值 455.164 229.455 111.746 63.779 30.085 18.335 P值 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 注:与O组比较,1)P<0.05;与LY组比较,2)P<0.05。 表 3 大鼠肾组织SOD、MDA水平比较
Table 3. Comparison of SOD and MDA levels in renal tissues of rats
组别 动物数(只) SOD(U/mg) MDA(nmol/mg) S组 8 67.57±6.501) 2.66±0.681) O组 8 45.38±4.98 4.01±0.43 LY组 8 71.75±10.891) 3.23±0.381) HY组 8 86.00±6.701)2) 2.53±0.371)2) F值 39.336 15.919 P值 <0.001 <0.001 注:与O组比较,1)P<0.05;与LY组比较,2)P<0.05。 -
[1] MARTÍNEZ-CECILIA D, REYES-DÍAZ M, RUIZ-RABELO J, et al. Oxidative stress influence on renal dysfunction in patients with obstructive jaundice: A case and control prospective study[J]. Redox Biol, 2016, 8: 160-164. DOI: 10.1016/j.redox.2015.12.009. [2] LU XL, JIANG YY, CAO Q. The role of oxidative stress and nuclear factor erythroid 2-related factor 2 in nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2020, 36(4): 924-927. DOI: 10.3969/j.issn.1001-5256.2020.04.048.陆孝良, 蒋元烨, 曹勤. 氧化应激与核因子E2相关因子2在非酒精性脂肪性肝病中的作用[J]. 临床肝胆病杂志, 2020, 36(4): 924-927. DOI: 10.3969/j.issn.1001-5256.2020.04.048. [3] TURPAEV KT. Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles[J]. Biochemistry (Mosc), 2013, 78(2): 111-126. DOI: 10.1134/S0006297913020016. [4] CAI GS, WEI ZH, XIAO HM, et al. Study on the dose-efficacy relationship of Yinchenhao decoction in past dynasties[J]. J Liaoning Univ Tradit Chin Med, 2019, 21(1): 129-132. DOI: 10.13194/j.issn.1673-842x.2019.01.035.蔡高术, 魏泽辉, 萧焕明, 等. 茵陈蒿汤历代剂量变化规律探讨[J]. 辽宁中医药大学学报, 2019, 21(1): 129-132. DOI: 10.13194/j.issn.1673-842x.2019.01.035. [5] LIU J, QU J, CHEN H, et al. The pathogenesis of renal injury in obstructive jaundice: A review of underlying mechanisms, inducible agents and therapeutic strategies[J]. Pharmacol Res, 2021, 163: 105311. DOI: 10.1016/j.phrs.2020.105311. [6] FAHMY SR. Anti-fibrotic effect of Holothuria arenicola extract against bile duct ligation in rats[J]. BMC Complement Altern Med, 2015, 15: 14. DOI: 10.1186/s12906-015-0533-7. [7] HUANG LP, XU YH, DENG MZ, et al. Research progress on chemical constituents, pharmacological mechanism and clinical application of Artemisiae Scopariae Herba[J]. Nat Prod Res Dev, 2021, 33(4): 676-690. DOI: 10.16333/j.1001-6880.2021.4.018.黄丽平, 许远航, 邓敏贞, 等. 茵陈的化学成分、药理作用机制与临床应用研究进展[J]. 天然产物研究与开发, 2021, 33(4): 676-690. DOI: 10.16333/j.1001-6880.2021.4.018. [8] JIN LX, JIN LJ, LUAN ZQ, et al. Research progress on chemical constituents and pharmacology of rhubarb[J]. Inf Tradit Chin Med, 2020, 37(1): 121-126. DOI: 10.19656/j.cnki.1002-2406.200027.金丽霞, 金丽军, 栾仲秋, 等. 大黄的化学成分和药理研究进展[J]. 中医药信息, 2020, 37(1): 121-126. DOI: 10.19656/j.cnki.1002-2406.200027. [9] SHI YP, KONG HT, LI HN, et al. Research progress on chemical composition and pharmacological effects of Gardenia jasminoides and predictive analysis on quality marker (Q-marker)[J]. Chin Tradit Herb Drug, 2019, 50(2): 281-289. DOI: 10.7501/j.issn.0253-2670.2019.02.003.史永平, 孔浩天, 李昊楠, 等. 栀子的化学成分、药理作用研究进展及质量标志物预测分析[J]. 中草药, 2019, 50(2): 281-289. DOI: 10.7501/j.issn.0253-2670.2019.02.003. [10] LIU JJ, LI ZL, SHANG HT. Study on Yinchenhao decoction regulating bile acid metabolism and intervening the mitochondrial DNA damage in liver cells of rats with obstructive jaundice[J]. Tianjin Med J, 2020, 48(9): 839-842. DOI: 10.11958/20200487.刘军舰, 李忠廉, 尚海涛. 茵陈蒿汤调节胆汁酸代谢并干预阻塞性黄疸大鼠肝细胞线粒体DNA损伤的研究[J]. 天津医药, 2020, 48(9): 839-842. DOI: 10.11958/20200487. [11] ZHANG XB, DUAN QL, LI ZL, et al. Expression of iNOS in the liver of rats with acute biliary obstruction[J]. Shandong Med J, 2013, 53(29): 19-21, 24. DOI: 10.3969/j.issn.1002-266X.2013.29.007.张西波, 段启龙, 李忠廉, 等. 急性胆道梗阻大鼠肝脏iNOS的表达及意义[J]. 山东医药, 2013, 53(29): 19-21, 24. DOI: 10.3969/j.issn.1002-266X.2013.29.007. [12] ZHANG HY, ZHAO B, WANG YH, et al. Emodin inhibits inflammation and oxidative stress by regulating Nrf2/HO-1 and MAPKs[J]. Chin J Immunol, 2021, 37(9): 1063-1068. DOI: 10.3969/j.issn.1000-484X.2021.09.008.张昊悦, 赵蓓, 王业皇, 等. 大黄素通过调节Nrf2/HO-1和MAPKs抑制炎症和氧化应激机制研究[J]. 中国免疫学杂志, 2021, 37(9): 1063-1068. DOI: 10.3969/j.issn.1000-484X.2021.09.008. [13] TAGUCHI K, YAMAMOTO M. The KEAP1-NRF2 system as a molecular target of cancer treatment[J]. Cancers (Basel), 2020, 13(1): 46. DOI: 10.3390/cancers13010046. [14] ZHOU J, WANG ZC, YIN YH. Discussion on prevention and treatment of diabetic nephropathy with Yiqi Huoxue method based on KEAP1-NRF2-ARE signaling pathway[J]. China J Chin Med, 2022, 37(4): 742-750. DOI: 10.16368/j.issn.1674-8999.2022.04.139.周吉, 王子晨, 阴永辉. 基于Keap1-Nrf2-ARE信号通路探讨益气活血法防治糖尿病肾病[J]. 中医学报, 2022, 37(4): 742-750. DOI: 10.16368/j.issn.1674-8999.2022.04.139. [15] WANG D, LIU J, ZHANG XY, et al. Geniposide alleviates liver injuries in rats with severe pancreatitis through the Nrf2/ Keap1/ARE pathway[J]. J Changchun Univ Chin Med, 2022, 38(6): 631-635. DOI: 10.13463/j.cnki.cczyy.2022.06.011.王丹, 刘捷, 张细元, 等. 栀子苷通过Nrf2/Keap1/ARE通路减轻重症胰腺炎大鼠的肝损伤[J]. 长春中医药大学学报, 2022, 38(6): 631-635. DOI: 10.13463/j.cnki.cczyy.2022.06.011. [16] BELLEZZA I, GIAMBANCO I, MINELLI A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865(5): 721-733. DOI: 10.1016/j.bbamcr.2018.02.010. [17] HU LF, WANG Y, REN RJ, et al. Anti-oxidative stress actions and regulation mechanisms of Keap1-Nrf2/ARE signal pathway[J]. J Int Pharm Res, 2016, 43(1): 146-152, 166. DOI: 10.13220/j.cnki.jipr.2016.01.022.胡流芳, 王迎, 任汝静, 等. Keap1-Nrf2/ARE信号通路的抗氧化应激作用及其调控机制[J]. 国际药学研究杂志, 2016, 43(1): 146-152, 166. DOI: 10.13220/j.cnki.jipr.2016.01.022. [18] LU M, WANG P, QIAO Y, et al. GSK3β-mediated Keap1-independent regulation of Nrf2 antioxidant response: A molecular rheostat of acute kidney injury to chronic kidney disease transition[J]. Redox Biol, 2019, 26: 101275. DOI: 10.1016/j.redox.2019.101275. [19] MA H, YANG B, YU L, et al. Sevoflurane protects the liver from ischemia-reperfusion injury by regulating Nrf2/HO-1 pathway[J]. Eur J Pharmacol, 2021, 898: 173932. DOI: 10.1016/j.ejphar.2021.173932.